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INTRODUCTION AND SUMMARY

For some time, the effects of nonhomogeneous behavior on the
spectra of atmospheric turbulence records have been debated. See,
for example, Flg. 19 and the accompanying discussion in the review
paper "Atmospheric Turbulence" by Houbolt [1]. It can be argued
that for homogeneous, isotrople turbulence, the von Karman spec-
trum should provide a good fit to experimentally determined spec-
tra [1,2]. In some situations, an excellent fit has been ob-
talned; in others, experimentally determined spectra have exhib-
ited a considerably more rounded "knee" than would be predicted
by the von Karman spectrum. This rounding of the knee has been
attributed by some investigators to nonhomogeneous behavior of
the turbulence records from which the spectra were computed.

The purpose of the work reported herein has been to determine
under what conditions nonhomogeneous behavior can be expected to
cause measurable deviations from the spectra that would have been
obtained from "comparable" homogeneous records. This statement
can be given a concrete meaning by assuming that the turbulence
velocity records under consideration have the form#¥

w(x) o(x) z(x) - (1.1la, 3.la)

<z?> =1 . (1.1b, 3.1b)

In the above equations, x denotes a spatial coordinate that may be
obtained from records measured as a function of time t by using
Taylor's hypothesis, i.e., x = Vt, where V is the speed of the air-
craft making the measurements. The function z(x) is assumed to be
drawn from a homogeneous (i.e., stationary) random process with
unit variance, and the nonhomogeneous standard deviation o(x) may
be regarded as either a deterministic function or a sample function
drawn from a random process. The function o(x) is, by definition,
nonnegative. A random process w(x) that has the form of Eg. (1.1)
has been given the name "uniformly modulated" [3,4].

If the process z(x) in Eg. (1.1) i1s assumed to be Gausslan in
addition to being homogenecus, then its power spectral density can
be measured by "infinitely clipping" (i.e., hard clipping) a

¥Most of the equations in this introductory section have two num-

bers. The first number designates the order of appearance of the
equation in the present section; the second number designates the
number associated with the same equation, as it appears later in
the report where the material is treated in detail.



turbulence record w(x) that is assumed to have the form of Eq.
(1.1). This may be seen by first recognizing that, since o(x) is
nonnegative, the zero crossings of w(x) and z(x), and the signs
of w(x) and z(x), both must be identical. We can, therefore,
construct the autocorrelation function of the sample function z(x)
from the infinitely clipped sample function w(x) by using the so-
called arcsin law [5].

$,(E) = sin [5 ¢ (8)] , (1.2, 3.20)

where ¢ (g) is the autocorrelation function of the infinitely
cllpped sample function w(x) (with amplitudes of the hard clipped
version of w(x) set equal to plus or minus unity after clipping),
and where ¢,(£) is the autocorrelation function of z(x). The model
described by Eg. (1.1) therefore provides us with a method of mea-
suring the form of the spectrum of a homogeneous record z(x) that
is "comparable” to the nonhomogeneous record w(x) except for the
nonhomogeneous behavior; this spectrum is obtained by forming the
Fourier transform of ¢,(f), which may be unambiguously computed
from the record w(x) by infinite c¢lipping and using Egq. (1.2). If
the shape of the spectrum obtained in this fashion is, except for
statistical variations, the same as the shape of the spectrum com-
puted from the nonhomogeneous record w(x) in the usual way, then
we must conclude that the nonhomogeneous behavior of the variance
02(x) has had no measurable effect on the spectrum of w(x). The
spectra of three experimental records have been computed in both
of the above ways 1in the work reported on herein.

Using assumptions or estimates of the function o(x) in Eq.
(1.1), or of its autocorrelation function, we may compute the
spectrum of w(x) from the spectrum of o(x) and the spectrum of
z(x), where the spectrum of z(x) is obtained by clipping w(x) and
using the "arcsin law" correction as explained above. Since we are
dealing with nonhomogeneous processes, the method used in this
report is to compute the instantaneous spectrum [6,7] of the
process w(x). The instantaneous spectrum possesses the important
property that 1ts time average yields the usual power spectral
density of the process being described. Thus, potential effects
of time-localized nonstationary behavior will show up clearly in
the instantaneous spectrum; whereas, in computing the time aver-
age assocliated with the usual power spectrum, these localized ef-
fects can be averaged out. An additional advantage of the instan-
taneous spectrum description of nonstationary processes is that it
possesses exact input-response relationships — e.g., for computa-
tion of the instantaneous spectra of aircraft responses [7].
Relevant properties of the instantaneous spectrum are reviewed
in Sec. 2 of this report. General expressions for the instanta-
neous spectra of the class of nonhomogeneous processes w(x)
defined by Eq. (1.1) are dervied in Sec. 3 for cases where o(x)



1s regarded as a deterministic function, a homogeneous random
process, and an ergodlc process.

To ascertain the importance of the fluctuating behavior of
o(x) on the instantaneous spectrum of w(x), a new series expansion
of the instantaneous spectrum of w(x) is derived in Sec. 4. The
first term in this series expansion is the usual quasi-~homogeneous
spectrum representation

0, (k,x) ~ o®(x) ¢ (k) , (1.3)

where %,(k) is the power spectrum of the homogeneous component z(x)
of the process defined by Eq. (1.1). The coefficlent of the nth
term in the expansion 1s shown to be proportional to (L;/Lg)0T,
where L, is the integral scale of the homogeneous component z(x)

of the turbulence, L_ is a length scale assoclated with the modu-
lating function o(x), and where the quasi-homogeneous approximation
provided by the first ferm is counted as n = 0. Thus, whenever
o(x) varies slowly in comparison with z(x) the expansion of the
instantaneous spectrum @w(k,x) will converge quickly.

Since the spectral form of the first term described by Eq.
(1.3) is the same as that of the process z(x), we can determine
whether the nonhomogeneous behavior of the process w(x) is suffi-
ciently rapid to affect the spectrum by looking at the behavior
of second term of the series expansion of @w(k,x). The first two
terms of the expansion may be expressed as

o (k,x) = 02(x)|e (k) - 1 d%2no(x) @;2)(1{) , (1.4, 4.53)
16m?2 dx?

where @éz)(k) denotes the second derivative of the power spectrum
¢,(k) of the process z(x). Thus, if |d%?[&no(x)]/dx?| is suffi-
ciently large, the shape of the spectrum will be affected by the
nonhomogeneous behavior of o(x). In Sec. 4, it is shown that the
integral with respect to x of the second term in the right-hand
side of Eq. (1.4) always has the effect of smoothing the knee,
whenever ¢,(k) is the (transverse) von Karman spectrum. It is also
shown there that the shape of the von Karman spectrum will, for
practical purposes, be unchanged by the nonhomogeneous behavior
whenever

d2eno(x)
dx?

L2
A

< 0.04 (1.5, L4.82)

where L, is the integral scale of the stationary component z(x).



For the case where the homogeneous component z(x) in Eq. (1.1)
is assumed to have a von Karman transverse spectrum, the two-term
expansion of Fq. (1.4) is evaluated in Sec. 4 for two analytical
forms of o(x), which represent an abrupt onset of turbulence and a
burst of turbulence. In the example of the abrupt onset of turbu-
lence, let Ly denote the nominal "rise length" (i.e., V times the
rise time) of the modulating function o(x). For this case, it is
shown that when L; > 10 L,, the effects of the nonhomogeneous
behavior will be virtually undetectable in the instantaneous spec-
trum; whereas, when Ly < 5 L,, the instantaneous spectrum will dis-~
play a strongly rounded knee for values of x in the vicinity of the
rise of o(x).

In the example of the burst of turbulence, let L denote ap-
proximately one-half of the total length of the burst® For this
case, 1t is shown in Sec. 4 that when Ly > 13 Ly the effects of the
nonhomogeneous behavior of o(x) will be v1rtually undetectable in
the instantaneous spectrum; whereas, when L; < 7 L, the instanta-
neous spectrum willl display a strongly rounded knee for all values
of x.

The vertical trace of the velocity record displayed in Fig. 11
of this report has six "bursts" of turbulence identified by arrows
on the record. According to the above criteria, it is shown in
Sec. 4 that the first two and last two bursts shown on the record
will cause strong smoothing of the knee of the von Karman trans-
verse spectrum; whereas. the middle two bursts would probably cause
weak but detectable smoothing of the knee. Bursts with durations
appreciably longer than the durations of the middle two bursts
shown in Fig. 11 would cause undetectable smoothing of the knee.

To verify the above theoretical conclusions, we processed two
nonhomogeneous turbulence records using the techniques developed
during the program. Our predictions indicated that the nonhomoge-
neous behavior of neither record occurred sufficiently rapidly to
have a measurable effect on its spectrum. This prediction was
experimentally verified, since the spectra computed from the in-
finitely clipped records, after correction using the "arcsin law"
of Eq. (1.2) above, were essentially identical with the spectra
computed in the usual way from the records w(x). The nonhomo-
geneous modulating function o(x) of one of the records was then
length scaled, and the spectra computed from this scaled version
of the original record were shown to be 1In complete agreement with
the conclusions drawn from the burst-of-turbulence example described
above.

The authors wish to acknowledge the efforts of Mr. E. Turner
of the Air Force Flight Dynamics Laboratory, who supplied the LO-
LOCAT tapes, and Major D.J. Golden, formerly with the Air Force
Flight Dynamics Laboratory, who was especially helpful in the early
stages of the work. The typing of the report was carried out by
Ms. Charlotte Eordekian, and the final illustrations were prepared
by Ms. Laura Selvitella.
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RELEVANT PROPERTIES OF THE INSTANTANEOUS
POWER SPECTRUM

The method used in this report to study the effects of non-
statlionary behavior on the spectra of turbulence 1s based on the
instantaneous power spectral density. The lnstantaneous spectrum
and some of its properties are reviewed in the present section.
The development follows closely the work of Mark [7].

The Instantaneous Power Spectrum

Consider a record w(t) of turbulence velocities. We shall as-
sume that w(t) 1s a sample function from a generally nonstationary
random process {w(t)}. Following Bendat and Piersol [6] and Mark
[7], we may define an instantaneous autocorrelation function for
the process {w(t)} as

6, (Tot) & <w(e-D) w(t+D)> (2.1)

where the angular brackets shall denote everywhere in this report
an ensemble average.¥* Again following Bendat and Piersol [6] and
Mark [7], we may define the instantaneous power spectral density
of {w(t)} as

o (£,8) & Lm(pw(T,t)e‘iz“der (2.2a)
= J ¢W(T,t) cos (2nft)dT (2.2b)
= 2 f ¢W(T,t) cos (2nfrt)dt , (2.2c)

0

where the second and third lines follow from the fact that ¢, (t,t)
is a real and even function of 1. From Eq. (2.2b), it is immedi-
ately evident that the instantaneous spectrum ¢ (f,t) is real and
is an even function of frequency f.

From the Fourier mate to Eq. (2.2a), we may express ¢ (T,t)
. w
in terms of @w(f,t):

#In Sec. 4, angular brackets with a subscript x are used to denote
a space average over the coordinate x.



6, (T,) = j o (£,t)et2  Tar (2.3a)
= J @w(f,t) cos (2mwfT)drf (2.3b)
= 2 J ¢w(f,t) cos (2mnft)df , (2.3¢)

0

where, again, the second and third lines are a consequence of the
fact that Qw(f,t) is real and is an even function of f.

To provide motivation for the term "instantaneous power
spectrum", we note that by substituting Eq. (2.1) into the left-
hand sides of Egs. (2.3b) and (2.3c) and setting 1 = 0 in the
resulting expressions, we have

]

<w?(t)> J ¢ (f,t)df (2.4a)

2 JU ®w(f,t)df . (2.4p)

Hence, ¢,(f,t) is a frequency decomposition of the expected
"1nstantaneous power" <w2(t)> of the process {w(t)}. Furthermore,
in the case of a stationary process w(t), we have

¢W(T,t) = <w(t) w(ttt)> = Rw(r) R (2.5)

where R, (T) 1s the usual definition of the autocorrelation function
of a statlonary process. It follows directly from Eg. (2.5) and
the definition of Eq. (2.2), that the instantaneous spectrum
¢,(f,t) is independent of t in the case of stationary processes

and that it reduces to the usual definition of the power spectral
density in these cases.

In the case of ergodic processes with zero mean value, we have
for the usual autocorrelation function



. T/2
R (T) 4 %iﬂ %-LT/2 w(t-3) w(t+5)dt (2.62)
. T/2
_ lim 1 J
= 0= ¢ (T,t)dt , (2.6b)
T T _1/2 W

where it is assumed that ¢W(T,t) decays to zero sufficiently fast
as a function of T so that the above limits exist. Notice that, in
Eq. (2.6b), we have written

¢W(T,t) = W(t—%) W(t+%) 5 (2.7)

i.e., no ensemble average has been taken. Consequently, for an
ergodic process, it follows that the usual power spectral density
may be obtained from a time average of the instantaneous spectrum;
i.e.,

1im 1 JT/Q

d () = -
W T T _-T/2

@w(f,t)dt , (2.8)

where we have again assumed that the limit in Eq. (2.8) exists.¥
In words, for an ergodic random process, the time average of the
instantaneous spectrum of a single sample function approaches the
usual power spectral density of the process as the averaging time
approaches arbitrarily large values. It will become evident later
that this property of the instantaneous spectrum is very important
in the present work. Other time-dependent spectrum representa-
tions [8], do not satisfy the property described by Eq. (2.8) for
the instantaneous spectrum.

Input-Response Relationships

Consider an aircraft with spatial extent negligible in com-
parison with the scale of turbulence. We may characterize the air-
craft by its response h(t) to a "unit impulse" of turbulence velo-
city occurring at t = 0. To discuss the input-response relation-
ships for the aircraft, it is necessary to define the instantaneous

¥For simplicity, we have ignored the problem of the existence of
the limit in Eq. (2.8). See, for example, Davenport and Root [9]
pp. 107-108, or Middleton [10]. Our neglect of this point has no
practical significance for the present work.



autocorrelation function of the unit-impulse response function h(t)
as

6,(Ts6) & n(t-D) n(e+l) (2.9)

from which we may define the instantaneous spectrum of h(t) as

=

o, (£,%) J q)h(T,t)e_izﬂdeT i (2.10)

Let {y(t)} denote the generally nonstationary response process of
the aircraft, and let ¢ {(1,t) and 9,(f,t) denote the instantaneous
autocorrelatlon functlon and 1nstan¥aneous spectrum of the response.
Then, in Mark [7,711] it is shown that the instantaneous autocorre-
lation function and instantaneous spectrum of the response process
are related to the corresponding characterizations of the input
process and aircraft by

¢y(T,t) = Lo mebh(i,u) ¢, (1-€,t-u)dédu (2.11)
and
@y(f,t) = Lﬂ)@h(f,u) @w(f,t—u)du . (2.12)
Consider the above expression for ¢,(1t,t) evaluated at v = O.

Using the fact that ¢,(£,t) is an even flnction of &, it follows
directly from Eq. (2. ll) that the instantaneous mean-square aircraft
response may be expressed at a generic time t = t' as

<y2(t')> = o, (E,u) ¢ (E,t'-u)dEdu . (2.13)
-— 00 h W

[Pe o]

From Egs. (2.9) and (2.13), it 1is easy to show that if h(t) is =zero
everywhere except within the 1nterva1 0 <t < T, then the only
region of ¢,(&,t) that affects <y 2(¢')> is the shaded area shown in
Fig. 1. Furthermore, one can show that the only interval of t of
the process {w(t)} that affects the shaded region shown in Fig. 1
is the interval (t'-T) < t < t'. Consequently, for the purpose of
computing the mean-square response of h(t) at time t' by Eq. (2.13),
it is necessary to represent the autocorrelation function ¢w(£ t)
accurately only within the shaded reglon shown in the figure. This
fact is important, because it implies that we may use local



l«-—————— T ————»

REGION OF INFLUENCE OF
¢, (& 1) ON <y2(1")>

FIG. 1. REGION OF INFLUENCE OF ¢ (£,t) ON <y?(t')> FOR

SYSTEM IMPULSE RESPONSE FUNCTION h(t) THAT IS
NONZERO ONLY WITHIN THE INTERVAL 0 < t < T.



representations of ¢,(&,t), valid only within the diamond shown in
Fig. 1, for the purpose of determining the mean-square response of
an aircraft.
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UNIFORMLY MODULATED MODEL OF NONHOMOGENEOUS TURBULENCE

In the previous section, we discussed a power spectral repre-
sentation of nonstationary turbulence veloclitles. 1In the turbu-
lence literature, it is customary to consider the corresponding
nonhomogeneous behavior 1nstead, where the nonhomogeneity is with
respect to a spatlal coordinate, say x. Transformation between the
time coordinate t and the spatial coordinate x 1s carrled out by
invoking Taylor's hypothesis — i.e., x = Vt — where, in the present
application, V is the speed of the aircraft used in making the
turbulence measurements. From here on, we shall refer to non-
homogeneous rather than nonstationary behavior.

Definition of Uniformly Modulated
Nonhomogeneous Turbulence

One of the simplest forms of nonhomogeneocus behavior is non-
homogeneity in the intensity or "instantaneous variance" of a
record of turbulence velocities. The effects of such nonhomoge-
neous behdvior on the spectrum of turbulence have been debated for
some time. See, for example, Fig. 19 and the accompanying discus-
sion in the review paper "Atmospheric Turbulence" [1].

A quantitative model of such nonhomogeneous behavior is the
representation of a turbulence velocity record w(x) by the product
law

w(x) o(x) z(x) , (3.1a)

<zz> = 7

> (3.1b)

where z(x) is a homogeneous (i.e., stationary) random process with
unit standard deviation and o(x) is the nonhomogeneous standard
deviation of w(x). Thus, o(x) is necessarily nonnegative.
Processes of the form of Eg. (3.1) have been referred to by
Shinozuka (1964, 1965) as uniformly modulated.

If we have a single record of nonhomogeneous turbulence w(x)
that is assumed to obey the product law of Eq. (3.1) and if o(x) is
estimated from this single record, we may regard o(x) either as a
deterministic function or as a sample function of a random process.
We shall discuss both of these interpretations below. For both,
it will be assumed that z(x) is a Gaussian process.
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Instantaneous Spectrum of Uniformly
Modulated Turbulence
Case of deterministic o(x). The instantaneous spectrum of

w(x) is defined as the Fourier transform of the instantaneous auto-
correlation function ¢x(£,x); i.e.,

3, (k,x) & [ﬂn¢w<a,x>e‘i2“k5da- ; (3.2)
where ¢w(£,x) is defined as
6,(E:x) & <w(x-2) w(x+3)> . (3.3)

Substituting the product model of Eq. (3.1) into Egq. (3.3) and
first considering o(x) to be deterministic, we have for the instan-
taneous autocorrelation function of w(x),

6, (£:%) = 0(x-3) o(x+5) <z(x-5) z(x+5)> (3.4a)
= 05(E,%) ¢_(8) (3.4b)

where, here, we have defined for deterministic o(x),

6, (£,%) & 0(x-5) o(x+d) (3.5)
and
$,(8) & <a(x-2) z(x+5)> (3.6a)
= <z(x) z(x+g)> (3.6b)
since z(x) is, by assumption, homogeneous. From Egs. (3.1b) and
(3.6), it follows that
$,(0) = 1 (3.7)

Substituting Eq. (3.4b) into Eg. (3.2), it follows that

12



0, () = [0 (e, 0, (e)e7 2 g (3.8)

Applying the convolution theorem to Eqd. (3.8), we may express
¢W(k x) in terms of the Fourier transforms ¢ (k,x) and ¢ (k) of
b5 (£,x) and ¢, (g); i.e.

o, (k,x) = j_w 0 (v,x) 0 (k=v)dv (3.9)

where the definitions of @G(k,x) and @Z(k) are

e

0, (x) & [ o (e, 0067t B (3.10)

and

=

0,00 & [ o (e)e7 BBy (3.11)

Eguation (3.9) is a fundamental relationship that expresses the
instantaneous wavenumber spectrum ¢,(k,x) of the process w(x) as
the wavenumber convolution of the instantaneous wavenumber spectrum
¢5(k,x) of the nonhomogeneous standard deviation o(x) and the usual
wavenumber spectrum ¢Z(k) of the homogeneous process z(x).

Case of possibly nmonhomogeneous stochastic process ogl(zx).
Equations (3.6) to (3.11) also apply to situations where o(x) is
considered to be a possibly nonhomogeneous stochastic process that
is statistically independent of the process z(x), except that in
these cases, the instantaneous autocorrelation function of o(x) is
defined as the mathematical expectation of the right-hand side of
Eq. (3.5); i.e.,

¢G(E,X) = <0(x— ) 0(x+ )> . (3.12)

Case of homogeneous process o(x). When the process o(x) is
homogeneous, the instantaneous autocorrelation function of o(x)
becomes independent of x; thus, for homogeneous o{(x), we have

<0(x— ) o(x+g)>

6, (E,%) = ¢_(E)

<o(x) o(x+g)> . (3.13)

13



Thus, for homogeneous processes o(x), it follows from Eq. (3.10)
that %5(k,x) reduces to the usual wavenumber spectrum of o(x),
which is

oo

5, (k,x) = o (k) = jwqac,(a)e‘““kgda : (3.14)

Hence, when o(x) is homogeneous and independent of z(x) it follows
from Eq. (3.9) that ¢,(k,x) 1s independent of x and is expressed in
terms of the spectra of o(x) and z(x) by the convolution of & (k)
and ®Z(k): ©

@w(k) = [ @O(v) @Z(k—v)dv . (3.15)

-0

Case of ergodic process o(x). When o(x) is an ergodic process,
we may obtain the autocorrelation function of o(x) from a single
realization of o(x); i.e.,

_ lim 1

X/2
I o(x-%) o(x+%)dx : (3.16)

-X/2

Equations (3.15) and (3.14) apply to ergodic processes o(x) that
are independent of z(x), where, in these cacses, the autocorrelation
function of o(x) may be evaluated by using Eg. (3.16).

For ergodic processes o(x) that are independent of z(x), we
may also determine the wavenumber spectrum of w(x) by taking a
"space average" of Egq. (3.9), where, in this case, we interpret
@O(k,x) as having been obtained from Egqs. (3.10) and (3.5); thus,

lim
PG

X/2
f @w(k,x)dx (3.17a)

=

& (k)
w -X/2

1lim
X =00

X/2 ©
j Lﬂ)QO(V’X) @Z(k—v)dvdx

] Lo

-X/2

o . X/2
J ;iz % J ¢O(v,x)dx ®Z(k—v)dv
- -X/2

L«,ég(v) @Z(k—v)dv s (3.17b)
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where we have obtained @U(v) above by the "space average"

lim
X—>oo

@c(v,x)dx (3.18a)

=

Qc(v) JX/2

-X/2

_ 1lim

K>

jX/z —i27vE

J_m ¢>U(E,X)e dgdx

-X/2

o . X/2 .
lim 1 j ~i2mvE
e ¥ ¢ _(&,x)dx]| e dag
Lw [X X _X/2 o) }

= o]

| ogteret2™Ee (3.18b)

where, here, we interpret ¢G(£) as the space average

. X/2
- lim 1 _& £
05(8) = ¥ 3 [ 0eH) stebrax (3.19)
-X/2
as in Eq. (3.16).
Comparison with evolutionary spectrum. The above apparently

trivial operations for homogeneous and ergodic processes o(x) have
important implications for other definitions of time-dependent
spectra. In essence, what we have shown above is that for processes
that are homogeneous or ergodic, results that are obtained using the
instantaneous spectrum reduce, automatically, to the usually homo-
geneous or ergodic process results. Specifically, for both homo-
geneous and ergodic processes, Eq. (3.15) [or Eg. (3.17b)] provides
an expression for the "power" spectrum of the uniformly modulated
process w(x), where, for homogeneous processes, ¢o(k) is the
Fourier transform of the autocorrelation function obtained by the
ensemble average, Eq. (3.13); whereas, the ergodic processes &5(k)
may be interpreted either as the "space average" of the instanta-
neous spectrum defined for a single realization of o(x) with no
ensemble average [e.g., Eq. (3.18a)] or as the Fourier transform of
the autocorrelation function of o(x) obtained by a "space average"
as in Egs. (3.18b) and (3.19).

The evolutionary spectral density of Priestley [712,13] does
not, generally, satisfy properties comparable to those described
above. For example, Howell and Lin [8] have used the uniformly
modulated model of turbulence [Eg. (1) of their paper] to study
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the response of flight vehicles to nonstationary atmospheric
turbulence. Thelr approach uses the evolutionary spectral den-
sity. It immediately follows from Egs. (1), (3), and (A4), and
the comment immediately following Eg. (2) of their paper, that for
processes o(x) that are either homogeneous or ergodic [processes
c(t) that are stationary in their notation], the power spectrum of
w(x) is proportional to ¢,(k). [In their notation, the power
spectrum of W(t) is proportional to %aa(w).] It must be concluded
that their spectral representation falls to satisfy an important
consistency requirement; namely, it does not reduce to the correct
result in cases where the component processes are taken to be
either stationary or ergodic. That is, in cases where o(x) and
z(x) are homogeneous (stationary) or ergodic, the spectrum of w(x)
is the convolution of the spectra of o(x) and z(x), as is indicated
by our Eq. (3.15).

Measurement of Spectrum of Homogeneous
Component Using the Arcsin Law

In order to evaluate the contribution to the spectrum of w(x)
from the homogeneous component z(x), it 1s evident, from Eq. (3.9)
fwhich applies to the case of deterministic o(x)] and from Egs.
(3.15) and (3.17) [which apply respectively to homogeneous and
ergodic stochastic processes o(x)], that one must evaluate the
spectrum %,(k) of the homogeneous process z(x). A very convenient
feature of the uniformly modulated model of nonhomogeneous turbu-
lence of Eg. (3.1) is that when z(x) 1s assumed to be a Gaussian
random process, we have at our disposal a method to evaluate the
spectrum of z(x) from one or more recordings of the process w(x).
To recognize this, we first note that since o(x) i1s, by definition,
nonnegative, the zero crossings of the processes w(x) and z(x) in
Eq. (3.1la) necessarily coincide; moreover, the sign (positive or
negative) of the processes w(x) and z(x) between zero crossings
also coincide. Thus, for any recording w(x) that satisfies the
product law of Eg. (3.l1la), we may evaluate both the positions of
the zero crossings and the signs between zero crossings of the
process z(x) from these same quantities evaluated from the record-
ing w(x). Furthermore, it is known that from the positions of the
zero crossings and the signs of a Gaussian random process with zero
mean value, one can evaluate the power spectrum of the process
using the so-~called arcsin law; see, for example, Lawson and
Uhlenbeck [5], pp. 57-58.

In the present application, the arcsin law may be described
as follows. Compute the mean value of a recording of the process
w(x). Form a new sample from w(x) by subtracting the mean value
from the original recording. "Infinitely clip" this new sample so
that only the positions of the zero crossings and the signs of the
process between zeros are retained. Then construct a new sample
function that has a value of +1 everywhere where the clipped sample
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was positive and -1 everywhere where the clipped sample was nega-
tive. Construct the autocorrelation function of this newly con-
structed sample function and call it ¢,(§). Call the autocorrela-
tion function of the original sample function (with mean value
subtracted out) ¢,(£). Then, 1if the sample functions are of suffi-
clent length to provide good statistlcal reliability, the aresin
law states that we may reconstrucst ¢Z(£) from ¢°(£) by

$,(E) = sin [5 ¢,(8)] . (3.20)

By Fourier transforming both sides of Eqg. (3.20), we obtain a
relationship for the spectrum of z(x) in terms of properties of the
(infinitely clipped) waveform w(x).

Verification of the Arcsin Law Using
a Homogeneous Turbulence Record

Cumulative probability distribution function of stationary
record. Before using the sine transformation of Eg. (3.20)
with nonhomogeneous records, we checked the validity of Eq. (3.20)
directly, using a record of turbulence that appeared to be homo-
geneous — i.e., stationary. The record chosen for this test was
the vertical component of Test No. 190, Leg No. 5 of the LO-LOCAT
program [14]. This velocity record is shown in Fig. 2 of this
report.

First, the mean value, standard deviation, and cumulative
probability distribution function of this 27,000 sample point record
were computed. The mean value and the standard deviation computed
from the vertical component of Test No. 190, Leg No. 5 are

=
i

-.039 m/sec (-0.128 ft/sec) (3.21)

o 2.94 m/sec (9.63 ft/sec) . (3:22)

The cumulative probability distribution function P(W) is de-
fined as

W
P (W) éf p(w)dw (3.23)

-0

where p(w) is the (empirical) probability density function of the
record. P(W) was computed for increments of W of .03 m/sec

(0.1 ft/sec). The computed values of P(W), which are tabulated in
Appendix A of this report, are plotted on the Gaussian probability
coordinates in Flg. 3 as discrete points. The so0lid straight line
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shown in Fig. 3 represents a Gaussian cumulative probability dis-
tribution function with the same values of mean and standard devia-
tlion as those given by Egs. (3.21) and (3.22). It is evident from
Fig. 3 that little significant difference exists between the empir-
lcally determined distribution and the Gaussian distribution func-
tion. Consequently, insofar as its first order properties are con-
cerned, the vertical component of Test No. 190, Leg No. 5 appears

to be very nearly Gaussian. This is helpful because the sine trans-
formation of Eq. (3.20) assumes that the process z(x) is Gaussian.

Conventional power spectral density of stationary record. For
a direct test of the validity of the sine transformation of Eq.
(3.20), it was necessary first to compute the power spectral density
of the record in the conventional way. The method used is described
in Appendix B. A Papoulis window function was used to carry out the
smoothing of the spectrum in order to get adequate statistical
reliability. This window function has a minimum bias property
[15] and, in this sense, is optimum. The smoothed spectrum com-
puted in the conventional way is shown in Fig. 4.

Power spectral density computed from infinitely clipped sta-
tionary record and corrected using the arcsin law. To compute the
power spectral density of the record shown in Fig. 2 using the sine
transformation of Eq. (3.20), we first removed the mean value of the
record, m = -0.039 m/sec (-0.128 ft/sec). At every discrete sample
point of the record, the sign of the waveform was determined, and a
new record was generated with values of +1 where the original record
was positive and of -1 where the original record was negative. The
(unsmoothed) power spectrum of this "clipped record" was then com-
puted and its (inverse) Fourier transform was taken, yielding the
autocorrelation function ¢,(z) of the clipped record. A corrected
autocorrelation function ¢,(&) was then computed from ¢,(z), using
the sine transformation of Eg. (3.20). This corrected autocorrela-
tion function was then multiplied by the Fourler transform of the
same Papoulis (frequency) window function used in the conventional
spectrum computation, and the Fourier transform of this product was
taken. This finel result is the smoothed power spectral density
computed using the "arcsin law", as shown in Fig. 4. The details
of the above computational procedure are described in Appendix B.

It is evident from Fig. 4 that the differences between the
spectrum computed using the conventional method and that computed
using "infinite clipping" are insignificant. We must therefore
conclude that the stationary record shown in Fig. 2 is sufficiently
close to a stationary Gaussian random function for the sine trans-
formation of Eq. (3.20) to be considered valid.

Comparison of spectrum of stationary record with the smoothed
von Karman spectrum. Since, for statistical reliability, the spec-
tra computed from the vertical component of the stationary record of
Fig. 2 were frequency-smoothed, the von Karman (vertical component)
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spectrum should be smoothed by the same frequency window before
comparison with the above-described empirically determined spectra.
A close fit of the empirical and smoothed von Karman spectra will
then indicate that the stationary record may be regarded as having
a von Karman spectrum. A description of the smoothing procedure
for the von Karman spectrum is described in Appendix C.

Smoothed von Karman spectra evaluated with a standard devia-~
tion of 0 = 2.94 m/sec (9.63 ft/sec) and with the integral scales
of L = 91.44, 121.92, 152.4, 182.88 and 213.36 m (300, 400, 500,
600, and 700 ft) are plotted in Fig. 5 along with the spectrum
computed using clipping and the sine transformation. It is evi-
dent from Fig. 5 that the von Karman spectrum with an integral
scale of about L = 137.16 m (450 ft) provides a reasonable fit to
the empirically determined spectrum.

Statistical Confidence of Nonhomogeneous
Variance Estimates
The most straightforward procedure for estimating the non-

homogeneous standard deviation o(x) in the model of Eg. (3.1) is to
square and form a local average of a sample function w(x):

. 1 x+Ax/2
0%2(x) = N J , 6%2(x) z%(x)dx . (3.24)
x-Ax/2

Taking the expected value of the above equation, we obtained upon
using Eq. (3.1b):

x+Ax/2

<G2(x)> = iL j ©0?%(x) <z?(x)>dx
X lgx-Ax/2
1 x+Ax/2
= HJ o?(x)dx (3.25)
X=-Ax/2

Let Var {G?} denote the variance of the estimate of o?(x)
given by Eg. (3.25). Then, in Appendix D, it is shown that the
ratio of the variance of our estimate G62(x) to the square of the
expected value of o?(x), is given approximately by

var {6%} =1
m2 {6_2} - AkAX

= 1.069 X (3.26)
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SERIES EXPANSIOMN OF INSTANTANEOUS SPECTRUM OF
UNIFORMLY MODULATED TURBULENCE

Derivation of Series Expansion

According to Eq. (3.4b), the instantaneous autocorrelation
function ¢W(£,x) of uniformly modulated turbulence may be expressed
as

6, (E,x) = ¢ (E,x) 6_(E) , (4.1)

where ¢,(£,x) is defined by Eq. (3.5) for deterministic modulating
functions c(x), by Egq. (3.12) for possibly nonhomogeneous, stochas-—
tic o(x), and by Eq. (3.16) for ergodic o(x). Here, we are inter-
ested 1in determining the "threshold" in the rate of fluctuation of
o(x) that begins to have an effect on the spectrum of w(x). Thus,
we are interested in modulating functions o(x) that vary slowly in
comparison with the fluctuations in the stationary component z(x).
[See Eq. (3.l1la) for review of components.] This behavior will be
manifested 1n the appearance of the instantaneous autocorrelation
functions ¢g(&,x) and ¢,(&) in that ¢g(&,x) will change gradually
about the point & = 0 1n comparison with ¢ (E). Such behavior is
illustrated in Fig. 6.

The behavior illustrated by Fig. 6 suggests that it should be
possible to represent ¢5(£,x) by a few terms in its Maclaurin expan-
sion in the variable £ over the range of & where ¢_,(&) is not negli-
gible. To include cases where the derivatives of % (E,x) are not
continuous at £ = 0, we shall initially consider the Maclaurin ex-
pansion of ¢4 (€,x) valid in the region & > 0 by using right-hand
derivatives of ¢0(£ x) evaluated at the origin, & = 0. We denote
these right-hand derivatives of ¢ (£,x) with respect to & by

g 3 0glEsX)

{7 (000 (1:2)

n
3¢ £ = 0+

Theh, the Maclaurin expansion of ¢G(E,x), valid for positive and
negative £, may be expressed as

6™ (0+,x)

n
n! I

N
¢,(E,x) = Z

n

161"+ rg, (B2x) (4.3)

0

where
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€] .
e (80 = g0 [ o8 el - Y an (4.4)

0

¢§N+l)(n,X) N+1
(N+1)! €l

s 0 <n<o (4.5)

ere in the second form, Eq. (4.5), the (N+1l)st derivative
¢z (n X) is to be evaluated at some (generally unknown) point
withln 0 < n < », The absolute value signs in Egs. (4.3) to (4.5)
are a consequence of the fact that ¢ (E£,x) must be an even function
of §.

Let us now use Eq. (3.8) to obtain an expression for ¢ (k,x)
using the above expansion. Substituting Eq. (4.3) into Eq. W(3.8)
and interchanging orders of summation and integration gives’

(n)
N ¢ (0+,x) (= —io7k

Oy (k%) = Eo BT Lm AL fag Ry (K5 %)

(L4.62)
N ¢§n)(0+,x) ©
= 2 nzo — T L £ ¢Z(£) cos 2wkEJE + RN+1(k,x) ,
(4.6b)
where

Rag (000 = [ myppq (8200 0, (£)e™H2™HEqe (4.7a)
= 2 L rN+1(£,x) ¢Z(£) cos 2mkEJE |, (4.7p)

where we have used the fact that ¢,(&) and rN+l(£ X) are always
even functions of E&.

We are particularly interested in cases where the modulating
function o(x) is relatively well behaved. If the first N deriva-
tives of o(x) exist, then the first N derivatives ¢(n)(£ X) are
continuous in the varlable £ at £ = 0.

In these cases, the terms n = odd integer in Egs. (4.6a,b)
vanish, and we may rewrite Eq. (4.6a) as
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8™ (0,x) (=

N ;
o (k,x). = ) " o (£)eT ¥ g + R (k%) .

n N+1

1
0 n'!

(4.8)

However, differentiating¥® Eg. (3.11) n times with respect to k and
defining

(n) A g
¢Z (k) = g;ﬁ Qz(k) s (4.9)
we have
o) = (12w [ Mg (e)e B g (4.10)

hence, Eq. (4.8) may be expressed as

N an(x) (n)
<I>w(k,x) = nzo Q7 ¢, (k) + RN+l(k,x) s (4.11)
where
y 08 (0,0 L 9% (g,
an(x) = — = = = (4.12)
(-i2m) (=i2m) 3L £ =0

and where we have left the plus sign out of the argument of
$(n)(0+,x) in Egs. (4.8) and (4.12) because continuity of the first
N derivatives of o(x) implies continuity at & = 0 of the first N
derivatives with respect to & of ¢5(&,x).

Equation (4.11) is the desired result. The case of the most
interest is that where the power spectrum of the component z(x) has
the von Karman form. In these cases, we mag differentiate ¢,(k) N
times to obtain the expansion functions @én (k), n = 0,1,***, N in
Eq. (4.11). Evaluation of the expansion coefficients a_(x) will be
discussed shortly. n

¥Differentiation under the integral sign is discussed on p. 443 of
Apostol [16].
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In the applications of the series expansion of Eq. (4.11) that
follow, we shall deal mostly with cases where the remainder term
RN+l(k,x) is identically zero. Nevertheless, for other situations,
bounds can be put on the magnitude of this term as follows. It 1s
evident directly from Eq. (4.7b) that

IRN+1(kaX)| = 2lj I'N+1(€,X) ¢'2(€) cos 27mkEdE
: 0

| A

2 I |PN+1(€,X) ¢Z(£) cos 2wk |dg
0

A

2 J lre1 (E5x) 1o, (E) |dE (4.13)

0

Hence, from Egs. (4.5) and (4.13) it follows that

IR (k,X)] i max

0<n<x

N+1

oM 0| iy [ €7 feyte)1as
0

(4.1h)

where Ofiiw ¢éN+l)(n,x)( denotes the maximum value of ‘¢éN+1)(n,x)
within the interval 0<n<». For applications where the form of the
autocorrelation functions ¢5(&,x) and ¢,(§) are analytical, Eq.
(4.14) may be easily applied to provide a bound on Rysq(k,x).
Notice that the bound provided by the right-hand side %s indepen-
dent of wavenumber k.

Derivation of Expressions for Expansion Coefficients

For situations where the instantaneous autocorrelation func-
tion ¢5(&,x) is known, Eq. (4.12) provides an expression for evalu-
ating the expansion coefficients a,(x). Other expressions will now
be derived for situations. where o(x) is regarded as either a deter-
ministic function or a sample function from a possibly nonhomo-
geneous process or an ergodic process.

Case of deterministie o(x). Applying Leilbniz's formula for

the nth derivative of the product of two functions to the expres-
sion for ¢_(&,x) given by Eq. (3.5), we have
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n k £ n-k £
2 ¢0(£,x) _ ? M 3 c(x—g) ) o(x+2) (4 .18)
ag" x=0 X pEX pgn kK
where
!
) = FrasmT (4.16)
are the binomial coefficients. But
k g
9 O’(X——2—) _ 1 dk0'<n) (u L )
K Tk gk -17a
3E ( n n=x-=

and

n-k £
9" To(x+3) o1 a" ¥ (n) (o 170)
n-k n-k n-k '
& 2 dn n=x+§
2
Combining Egs. (4.15) to (4.17) gives
2%¢ (£,x) n k n-k
og'>? 1 k ,n, dao(n) d g(n)
— " on L DT Q) Tt n-k
13 2" k=0 dn n=x-& an n=x+e
2 2
(4.18)

Thus, evaluating Eq. (4.18) at £ = 0 and combining the resulting
expression with Eq. (4.12) gives

n k n-k
_ 1 ' k ,ny, do(x) a4 o(x)
a_(x) = ——— ] (=1)" () . (4.19)
n (-ihm)™ x=0 KDaxf axPK
From Eq. (4.19), we shall now show that
an(x) =0 |, n = odd . (4.20)
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We first note from the definition of the binomial coefficilents,
Eq. (4.16), that

() = 2 . (4.21)

Furthermore, when n is odd, there are always an even number of
terms in the summation on the right-hand side of Eq. (4.19). For
every term for which k < (n/2), there is a corresponding term. n-k,
where (n-k) > (n/2), which from Egs. (4.19) and (4.21) has identi-
cal magnitude but opposite sign to the term where k < (n/2) when-
ever n is odd. Consequently, an(x) is identically zero when n is
odd.

When n is even, there is an odd number of terms in the sum on
the right-hand side of Eg. 4.19. The middle term is the term for
which k = n/2. For every term for which k < (n/2) there is, in this
case, a corresponding term (n-k) > (n/2) identical in both magni-
tude and sign to_the corresponding term for which k < (n/2). Hence,
noting that (-1)" = 1 when n is even, Eq. (4.19) can be expressed,
whenever n is even, as

n
5-1
2 k n-k

_ 1 k ,ny, do(x) 4 o(x)
a (x) = ——— <2 (=)™ ()
n (i4m)" kzo R P
n/2 n dn/go(x) ’
+ (-1) (n/2) /> , h = even . (4.22)

dax

Equations (4.20) and (4.22) are :he desired expressions for the
expansion coefficients ap(x) for cases where the modulating func-
tion o(x) 1is considered to be deterministic.

Notice from Eq. (4.22) that evaluation at location x of the
instantaneous spectrum ¢y(k,x) by the finite series expansion of
Eq. (4.11) depends only on properties of o(x) measured at that same
value of x. This property is not true of the most general repre-
sentation of the instantaneous spectrum ¢,(k,x), which does not
depend on convergence of the series of Eq. (4.11). However, from a
physical point of view, dependence of &, ,(k,x) only on properties of
0(&) in the immediate vicinity of £ = x is a very desirable prop-
erty. Expressions for a,(x) to ag(x), obtained from Eq. 4.22, are
written out in Appendix E.

Case of possibly nonhomogeneous stochastie process of(x). In

cases where o(x) in Eg. (3.1la) is considered to be a possibly non-
homogeneous stochastic process that is independent of the

31



homogeneous process z(x), the terms aj, (x) may be obtained by taking
the expected value of Eq. (4.22), 1. e

n
=1
2 k n-k
_ 1 ; k ,n do(x) 4 o(x)
a (x) = ——— <2 (=1)" (1)< >
n (1bm)" kZO K axs dxn"k

n/2 2
+ (_1)n/2 (n/g) <l\dd—nq/(TX)—] > 3 n = even > (Ll.23)
X

and where, from Eq. (4.20), we have
an(x) =0 |, n = odd . (4.20 repeated)

Case of ergodic process o(x). According to Eq. (3.17a), in
cases where o(x) is ergodic and independent of z(x), we may obtain
the usual power spectral density &.,(k) of the process w(x) by
taking the average value of & (k, xy with respect to x. From Eq.
(4.11), it is evident that thlS averaging operation requires inte-
grals of the coefficients a,(x). In Appendix F, it is shown [Eq.

(F.14)] that for n = even, we have, upon introducing the definition
(F.11),
j a (xax = —2— | 7 -DF rosn) o) o) (5
A " (i4m)™ | 2=0
x=A
B 2
+%J (6("2)(x)7 ax , n=even , (h.24)
(2m)
where o(k)(x) is the kth derivative of o(x). The first term in the

right-hand side of Eq. (4.24) involves evaluation of the derivatives
of o(x) through order n-1 evaluated at the endpoints of the interval
A < x < B. For stationary processes whose derivatives through order
n exist, the expected value of the first term will be independent

of the length of the integration interval X = B-A, provided that X
is larger than the correlation interval of the process o(x).
Furthermore, since [o{n/2)(x)]% is necessarily positive, the second
term in the right-hand side of Eq. (4.24) increases with increasing
X = B-A, and for ergodic processes, this integral will become
proportional to X = B-A as X»». Consequently, as X»x, the first
term will become negligible in comparison with the second term.
Hence, in the case of ergodic processes, we have for the space
average of an(x) when the averaging interval 1s very large:
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i X/ 2
A 1lim 1 J
<a_ > = U= a_(x)dx (4.25a)
IIX X X _x/2 n
X/2
.1 1im 1 f [o(™2) 131 g (4.25b)
(om) X2 X L x/o *

=L <7

s, n = even , (4.25¢)

where <+++>, denotes an average with respect to the variable x over
an infinite interval as indicated by Eq. (4.25a). Noting that, in
the case of ergodic processes, <¢5(&,x)>y = ¢5(&), as is indicated
by Ea. (3.19), we have by combining Egs. (3.19), (4.12), and (4.25c¢c)
and setting n = 2m,

2m
d ¢O'(E) _ (_l)m<gmo_(x) >2

X > m
dg E—O dx

0’1’2,... 3

(4.26)
which is a well known result; see, e.g., p. 21 of Bendat [717].

The result implied by the equality of Egs. (4.25a) and (4.25b)
does not directly depend on the ergodic hypothesis; rather, it
applies to spectra in general that are computed from a single
record by appropriate averaging over the coordinate x. In this
interpretation, it is important to notice that if o(x) and its
derivatives vanish at the endpoints of the averaging interval, the
first term on the right-hand side of Eg. (4.24) vanishes, and the
only result that contributes to the right-hand side of Eq. (4.24)
1s the integral of [o(n/2)(x)]? provided by the second term.
Furthermore, in this case, or when the contributions provided by
the endpoints are negligible, it 1s immediately evident from Eq.
(4.24) that the integral of every a,(x), n = 0,2,4,-++ is nonnega-
tive. ©For ergodic processes, it i1s immediately evident from Eq.
(4.25¢) that <ap> , n = 0,2,4,-++ is always nonnegative.

Interpretation of Series Expansion

We shall now interpret the series expansion of Eq. (4.11) in
terms of typical length scales of the processes o(x) and z(x). We
consider first deterministic modulating functions o(x). Consider a
family of modulating functions o(x), each of which is identical with
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all others in the family except for a scale factor on the "x-axis".
Then, if we define a length scale, L., associated with this family,
all members of the family become identical when plotted as a func-
tion of x/Ls. Let us define the dimensionless independent vari-
able associated with this family of functions by

x £ x/Ly 3 (4h.27)

hence, we have x = Lg x. Then, the family of functions of the
dimensionless coordinate X, defined by

3(x) & o(L, X (L.28)

are all identical (by definition). This fact is, perhaps, more
easlly seen if we substitute Eg. (4.27) into (4.28); i.e.,

o(x) = E(x/LG) s (4.29)

where we have reversed the two sides of the equation.

Consider, now, the expansion coefficient, a,(x), defined by
Eq. (4.19), which requires the derivatives of o(x) for its evalua-
tion. Define

k— ,—
s(K) () 4 dox) (4.30)

Then, it immediately follows by repeated differentiation of Eq.
(4.29), using the "chain rule", that

k_

k
dfo(x) _ (j;) s /Ly . (4.31)
dxk LO o}

Consequently, using Eq. (4.31), Egq. (4.19) may be written as

S D I AN C % SN AL DN C'% D N

N>

1\" 1
a (x) = (&) ——
n* (Lo) (~i4m)" k=0

(4.32)
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or, changing to the dimensionless variable x on the right-hand
side, Eq. (%4.32) may be expressed as

_ {1\ 1 2 k ny =(k), =y =(n-k),—
an(x) = (J——:;) m kZO (-1) (k) g (x) o (x)
I O -
= (m‘) an(X) . (u-33)

Now, since all members o(x) of the family of functions are identi-
cal, it follows that the right-hand side of Eq. (4.33) is identical
for all members of the family, except for the term (l/Lc)n. Con-
sequently, it follows from Eq. (4.33) that for functions o(x),
identical except for a scale factor Lz on the abscissa, the co-
efficients ap(x), evaluated at "equivalent positions" X, are pro-
portional to (1/Lg)®. Integrals of a,(x) are proportional to
(1/L;)P~1. Notice that we may consider the (identical) functions _
G(X) as all having the same length scale of unity in the variable x.

For homogeneous stochastic processes oc(x), let us define the
autocorrelation function of o(x), as before, by

6, (E) & <o(x) o(x+E)> . (4.30)

Let us now consider a family of stochastic processes o(x), where
each member process of the family is identical to the others
except for a scale factor Lz on the abscissa. This implies that
the normalized autocorrelation function, defined as

65(8) = <o(Ly x) o(Ly x + L E)> (4.35a)

6,(L, T) s (4.35b)

is the same for all stochastic processes o(x) in the family, where

we have defined the dimensionless lag variable & as

s>

E/Ly - | (4.36)

Equation (4.35b) may be expressed in terms of the variable £ by

05(8) = B (E/L) (4.37)
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where we have again reversed the two sides of the equation. Defin-
ing

s & ot (4.38)

we have from Egs. (4.36) and (4.37),

g

dnd)o.(g) 1 n_(n)
— =<-L—) 5 ey (4.39)

Applying Eq. (4.39) to Eg. (4.12) for the homogeneous case where
¢5(E,x) 1s a function of & only, as indicated by Eq. (3.13), we
have

_ [V 1 =(n),=
a (x) = |{—) ——— ¢ (&) . (4.40)
n (Lo) (=izm)™ O )E -

Consequently, for homogeneous processes that are identical except
for a scale factor L. on the independent variable x, the coeffi-
cients ap(x) are all identical with each other except for a multi-
plicative constant (1/L0)n, as was the case for deterministic o(x).
A comparable result can be proved from Eq. (4.12) for nonhomoge-
neous stochastic processes o(x).

Consider now the homogeneous process z(x) in Egq. (3.1). Again,
we consider a family of processes z(x), where each member process is
identical to the others except for a scale factor L, on the
abscissa. Let ¢Z(E) be the autocorrelation function of one of these
processes. Define a dimensionless independent variable associated
with the process z(x) by

— X
X = = s (4.41)
L,

and a dimensionless lag variable by
T2 . (4.42)
z

Then, by arguments identical to those above for the stochastic
process o(x), it follows that the normalized autocorrelation func-
tion ¢,(&), defined as
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— é —
9,(E) £ ¢ (LE) (4.43)

i1s the same for every one of the stochastic processes z(x) in the

family. Expressing Eq. (4.43) in terms of the dimensional lag
varlable & gives

$,(8) = ¢, (&/L) , (4.44)

where we have again reversed the two sides of Eq. (4.43) in
going to Eq. (4.44),

Let us now form the Fourier transform of ¢,(&) [which is the
wavenumber spectrum of the process z(x)], and then use Eqg. (4.44):

o, (k) = j 6, (£)e 12MeEqg
o -i2wkL (&/L,)
=1L, J ¢, (/L )e dg/L,
. © _ _  -i2nlL k& _
=L, ¢, (E)e dg
T g Ez(sz) ? (4-45)
where we have defined
5,0 8 [ g me TR (4.46)

where k é k 1s a dimensionless wavenumber. According to Egs.
(4.9) and (E 11), we are interested in the derivatives of ¢Z(k).
Defining

n—_
A d ¢Z(k)

LN
dk

Eén)(ﬁ) , (4.47)

we have, upon uslng Eq. (4.45) and the "chain rule",
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oM a0y = 12t 50 () (4.48a)

zZ

n+l =(n)
L o, (LZk) . (4.48b)

z

Now, since ¢ (£) is the same for all members of the family of
stochastic processes z{x) under consideration, it follows from

Eq. (4.46) that 9,(k) and, therefore, its derivatives are also the
same for all membars. Thus, it follows from Eq. (4.48a) that the
nth derivative of the wavenumber spectrum of any one of the members
of the family of processes is equal to L0+l times a function that
is common to all members of the family.

Let us now combine Egs. (4.33) and (4.48b) with the series
expansion, Eg. (4.11):

N (L \" & (x/L)
o (k,x) = ] <~E> R A NG P R

(k,x)
! b b
=0 LO n! Z 7z z N+1

(4.49)

where an(x) and ®(n)(k) are the same for all members of the
families of processes that they respectlvely describe. It follows
that the rate of convergence of the series imn Eqs. (4.11) and
(4.49) is controlled by the ratio of length scales L /L 5° and that
when (L /L ) << 1, convergence should be rapid.

Let us now examine the first term in Eg. (4.11). Evaluating
Eq. (4.19) for n = 0, we see immediately that, for deterministic
o(x), we have

ao(x) = 0g2(x) . (4.50)

Hence, the first term in Eq. (4.11) is o2(x) ¢ z(k), which according
to Egs. (4.49), (4.33), and (4.45) is the 11m1t1ng form of the
instantaneous spectrum @w(k X) as (LZ/LO) + 0; that 1is,

@w(k,x) 2 0%(x) ¢Z<k) R (LZ/LO) >0 |, (4.51)

as we might expect on intuitive grounds. Equation (4.51) is the
usual quasi-stationary (or more appropriately, gquasi-homogeneous)
spectrum approximation. The above arguments provide a rigorous
Justification of this approximation.
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In order to determine when nonhomogeneous behavior begins to
have an effect on the form of the instantaneous wavenumber spectrum,
we need to include one correction term to the approximation, Eq.
(4.51). According to Eq. (4.19), we have

1

a, (x) = - — {o(x) o"(x) - [o'(x)]?} (4.52a)
z 82
=l grqyy $no(x) (4.52b)
8m? dx?

hence, including only one correction term to the quasi-homogeneous
approximation, Eq. (4.51), we have from Eqs. (4.11), (4.51), and
(4.52b),

2 _ 1 d&2eno(x) ,(2)
@w(k,x) ~ 0°(x) [@Z(k) e et e, (k)| >

(L,/L,) << 1 . (4.53)

By comparing the magnitudes of the two terms within the brackets in
Egq. (4.53), we can determine when nonhomogeneous behavior becomes

sufficiently rapid to change the form of the wavenumber spectrum
¢ (k).
Z

It is evident from Eg. (4.12) that the second term within the
brackets in Eq. (4.53) arises from the second derivative with
respect to & of the instantaneous autocorrelation function ¢45(&,x)
evaluated at & = 0. Consequently, if ¢U(E,x) is well approximated
by a quadratic function of & over the range of & where ¢,(&) is not
negligible, then the approximation of Eg. (4.53) should provide
good results. PFigure 6 illustrates such a situation.

Expansion Functions for von Karman Spectra

In order to evaluate the series expansion of Eq. (4.11), it is
necessary to calculate the derivatives of the power spectrum ¢,(k)
of the homogeneous component z(x). The case of most interest is
the von Karman transverse spectrum which has the general form

¢Z(k) L, EZ(E)

LZ EZ(LZk) s (4.54)
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k = Lk (4.55)

where
QJE)'cfilziiﬂ (4.56a)
=1, (®) £,(%) , (4.56b)

where
£ (k) = A + B k? (4.57)
£ (R) = (1+cE)Ve (4.58)

and where, for a two-sided spectrum satisfying [see Eq. (3.1b)]

fm ¢, (k)dk = <z%> =1 , . (4.59)
we have¥

A =1

B = 188.75

cC =170.78 . (L.60)

The quantity LZ is the integral scale of the turbulence.

Using Leibniz's rule for the nth _derivative of a product, we
may express the nth derivative of QZ(k) of Eq. (4.56b) as

J

hes13

. M e @ D@, (4.61)

¥Exact values of the constants B and C in Eq. (4.60) are given by
the left-hand sides of Egs. (C.4) and (C.3), respectively.
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where

J
3y & 4 fgk) . (4.62)
dk

Applying Eq. (4.61) to Eg. (4.56b) for n = 0,2,4,6, and 8, we ob-
tain

(X)) = (A + B R £,(B)

F(E) = (a+BE) @ + B E N®) + 2B 1 (B)
Eé“)(E) =+ @ + 88 K eP(E) + 128 {2) (%)
3@ = (a+BEY) (@ + 128 F £ (E) + 308 £{)(R)
Eée)(i) =a+ek) 0 + 168 K f£7)(E) + 56B fgs)(i) ,

(4.63)
where the first eight derivatives of fz(E) are listed in Appendix G.

The expansion functions Q;n)(k) in Eq. (4.11) can be computed
from the above expressions using Eq. (4.48b). Thus, except for the
amplitude and wavenumber scales, the functions ¢(n)(k) have the

sa?e form as the functions ¢(n)(k) The functions ®( )(E)/
n) (0)|, computed using the above formulas, are plotted in Fig. 7.

The functions plotted in Fig. 7 are related to the actual
expansion functions by

(n) 5(n)
0, 0 T (L k) ’ s
16{ 0y 138 (0|

as may be seen from Eq. (4.48b). Consequently, the signs of the
functions plotted in Fig. 7 are the same as the signs of the func-
tions ¢(n (k/L_). This fact is important for the following reason.
It was p01nted out earlier, under quite general conditions, that
integrals of the expansion coefficients an(x) are necessarily non-
negative. Consequently, in using the series expansion of Egq.
(4.11) to predict the wavenumber spectra of experimental records,
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the corrections to the von Karman spectra provided by the terms
n= 2,46, in Eq. (4.11) have the same signs as the signs of
the expansion functions plotted in Fig. 7. The spectrum shown in
the semi-log plot of Fig. 7 for n = 0 is the von Karman transverse
spectrum. The first correction term in Eq. (4.11) to the von
Karman spectrum is proportional to the curve in Fig. 7 for n = 2.
Thus, when a fraction of the curve for n = 2 1s added to the curve
for n = 0, the resulting spectrum is larger than the curve for

n = 0 for very small values of k, but is smaller than the curve
for n = 0 in the neighborhood of the knee. Thus, under quite
general conditions, we have shown that for mild nonhomogeneous
effects predicted by the two term approximation of Eq. (4.53), the
second term must have the effect of smoothing the knee of the von
Karman spectrum. This general effect of nonhomogeneous (i.e.,
nonstationary) behavior is well known.

Finally, we note that the values of Eén)(o) are

3, (0)

1.0

L]
—~
N
~
—~
o
~
|

= 117.97

o
—~
~

~~

o

~r
|

= -2.755 x 10°%

¢;6)(0) = 9.210 x 10°®

S
~
@
S
—~
o
~
|

= -4.898 x 10'? . (4.65)

Examples: Abrupt Onset of Turbulence and
Burst of Turbulence

Abrupt onset of turbulence. As a first example of nonhomo-
geneous turbulence, we consider the case where the modulating func-
tion o(x) of Eq. (3.1) rises abruptly from zero to unity. A con-
venient mathematical representation of such behavior is

o(x) = % [1 + tanh (2x/L)] . (4.66)

which is illustrated in Fig. 8. Notice from Fig. 8 that Lg; is the
nominal distance associated with the rise: Ls is defined as the
distance required for a straight line approximation to o(x) to rise
from zero to unity with slope equal to the slope of o(x) evaluated
at the mid-rise position x = 0. Notice that o(x) remains at unity
for arbitrarly large values of Xx.
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To evaluate the effect of this nonhomogeneous behavior of o(x)
on the instantaneous spectrum ¢,(k,x), we need to evaluate a,(x)
given by Eg. (4.52a). It 1is easy to show from Eq. (4.66) that the
first two derivatives of o(x) are

o' (x) (1/L,) sech? (2x/L;) (4.67a)

and

o"(x) -(u/Lé) sech? (2x/LG) tanh (2x/L0) . (4.67Db)

Using Egs. (4.66)and (4.67), it is shown in Appendix H that

o2 (x)

az(x) = p—
2m L0

sech? (2X/Lc) . (4.68)

Therefore, using Egs. (4.50) and (4.68), we may express the two-
term approximation to ¢w(k,x) as

2, (k,x) ~ a,(x) o (k) + 3 a (x) {*)(x) (4.69a)
sech? (2x/L0) (2)
= g2 (x) ®Z(k) + ) (k) (4.69b)
. 21,2 z
g
= g2 (x) L, [EZ(LZk)
1 (LY (2)
+ E;;—(Ei) sech? (2x/Lo) Ez (sz) , (4.69¢)

where we have used Eq. (4.48b) in going to the last step.

The first term o2(x) L, ®5;(Lzk) in the right-hand side of
Eq. (4.69c) is the quasi-homogeneous approximation to the instan-
taneous spectrum ¢,(k,x), valid when <LZ/L0) + 0. Notice that the
coefflcient a,(x), given by Eq. (4.68), is nonnegative¥* for all

*¥It was shown in Sec. 4.2 that infinite integrals of the a,(x) must
be positive; however, for some values of x, the coefficients an(x)
can, in general, be negative.
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values of x, and that the coefficient to the correctlion term in
Eq. (4.69c) is proportional to the ratio of length scales (LZ/LU)Z,
as was shown, for general processes, by Eq. (4.49).

The dependence on x of the correction term in Eq. (4.69c) is
proportional to sec®(2x/L;) which is plotted in Fig. 9. From Fig.
9, it is evident that the correction term has appreciable influence
only in the region -(L;/2) < x < (Lc/2)’ where o(x) itself displays
nonhomogeneous behavior, as may be seen from Fig. 8.

Since the sign of a,(x), Eq. (4.68), is everywhere nonnegative,
it is easily seen from Eq. (4.69a) and Fig. 7 that the nonhomo-
geneous behavior of the present example has the effect of smoothing
the knee the von Karman spectrum for all values of x. Noting from
Egs. (4.65) that $,(0) = 1 and 8{2)(0) = 117.97 and from Fig. 9
that sech?(0) = 1, it is evident from Fig. 7 and Eq. (4.69c) that
the ratio of the maximum contribution of the correction term to the

quasi~-homogeneous term occurs at k = 0, and is
2
c o 117.97 (Eg)
Y2 LU
L 2
~ 3.0 2 (4.70)
. Lo . .

It may be seen from the curves for n = 0 and n = 2 1in Fig. 7 that
when C > 0.10, the correction term in Eq. (4.69c) will exhibit
appreciable smoothing of the knee. Solving Eq. (4.70) for (L,/Lg)
when C = 0.10, we find (Lz/Lo) x 0.2 for this case. Consequently,
when L; < 5 L,, the instantaneous spectrum of the nonhomogeneous
turbulence with modulating function o(x) shown in Fig. 8 will show
a strongly rounded knee at x = 0. On the other hand, when C < 0.03,
the smoothing of the knee caused by the correction term will be
barely discernible. Solving Eq. (4.70) for (L,/Lgy) for this case,
we find that when Ly > 10 L., the nonhomogeneous effects will be
virtually undetectagle in the instantaneous spectrum for the
modulating function o(x) shown in Fig. 8.

Burst of turbulence. For a second example, we consider the
case where the modulating function o(x) of Egq. (3.1) rises abruptly
from zero to unity, and then falls abruptly back to zero. A con-
venient model for this behavior is the Gausslan funection.

-m(x/L_)?
a(x) = e ¢ , (4.71)

which is illustrated in Fig. 10. The coefficient m in the exponent
of Eq. (4.71) was chosen so that the running integral Liao(a)dg has
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the same scale as the function shown in Fig. 8; that is, the
tangent to Lioc(g)dg at x = 0 grows from zero to unity within a
span of exactly L units of x.

Using Eq. (4.52b) to evaluate a, (x) 1n this case, we find im-

medlately from Eq. (4. 71) that d?%no(x)/dx? = 21r/L2 hence, we
have
, .
az(x) = G_(_X). , (u,72)
by Lé

which is everywhere nonnegative, as was the case in the previous
example. From Eq. f4.69a), we therefore have for our two-term
approximation to ¢w(k,x) in this case

&

1 (2)
<1>w(k,x) o2(x) [@Z(k) + ﬁ ¢Zz (k)] (4.73a)
(o}

L 2
0?(x) L, [?52<sz) + g];(ii) Eé")(sz)] . (4.73D)

where we have again used Eq. (4.48) in going to the second step.
Equation (4.73b) is of the general form of Eq. (4.49), as before.
The relative weight of the correction term to the quasi- homogeneous
approximation, in thils case, is independent of x.

Again noting from Egs. (4.65) that ¢Z(O) = 1 and ¢é2)(0) =
117.97, it is evident from Fig. 7 and Eq. (4.73b) that the ratio
of the contribition of the correction term in Eq. (4.73b) to the

quasi-homogeneous term evaluated at k = 0 is
2
c o 117.97 (L2
8 Lo
L_\? |
~ 2z
= 4.7 <Lo) . (4.74)

Using the same reasoning as in the previous example, we find for
the present example that when Ly < 7 L,, the instantaneous specirum
will show a strongly rounded knee (for aZZ values of x), whereas
when Lg > 13 L,, the nonhomogeneous effects will be vzrtuaZZy un-
detectable in Zhe spectrum.
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In the first example of the modulating function illustrated in
Fig. 8, in integration of the instantaneous spectrum o,(k,x) with
respect to x to obtain the counterpart to the usual spectrum com-~
puted from experimental measurements, the effects of the nonhomo-
.geneous rise illustrated in Fig. 8 would soon be averaged out in
the integration, so that the effects of even a very rapid rise
might not show up noticeably in a spectrum obtained from measured
turbulence velocities.*¥ However, the modulating function illus-
trated in Fig. 10 does not approach an asymptotically constant
value (other than zero); consequently, any effects on the spectrum
predicted by Eq. (4.73b) would show up in an integrated instanta-
neous spectrum as well; that is, in the ordinary spectrum computed
from measured velocities.

Application to a Recorded Velocity History

It is of considerable interest to determine if measured
records of atmospheric turhulence have nonstationary effects occur-
ring sufficiently rapidly for such effects to be manifested in
thelir spectra. For most records, 1t would seem that such non-
stationary effects occur too slowly. However, the record shown in
Fig. 11 has nonstationary behavior sufficiently rapid to show up
in its spectrum.

Six "bursts" of turbulence are indicated by arrows in the
vertical trace shown in Fig. 11. In each of these six bursts, the
peak values appear to be at least four times the rms levels in the
immediate neighborhoods of the bursts, and we must therefore regard
their behavior as nonhomogeneous (or nonGaussian). The nominal
"durations” T; of these bursts are related to corresponding lengths
Ly by

LO’
- (4.75)

c

where V i1s the measuring aircraft spedd, which was 172.2 m/sec
(565 ft/sec) for the record shown in Fig. 11. Consequently, apply-
ing the results of the previous example, we find that if

L

4
TO._<_ 7 T ) (“-76)

strong smoothing of the knee of the von Karman spectrum will be
caused by the bursts, whereas, if

¥This conclusion would appear to differ from the conclusion drawn

by Houbolt [1]. See the discussion accompanying Houbolt's Fig. 19.
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the effects on the spectrum by the nonhomogeneous behavior will be
difficult to detect.

The scale of the homogeneous component L, of the vertical
record shown in Fig. 11 was not computed. Let us assume that it 1s
137.16 m (450 ft), which is the scale of the vertical record shown in
Fig. 2 and which is the scale determined from another low-altitude
vertical record to be discussed in the next section. Thus, our cri-
terion for strong smoothing of the knee 1s, from Eq. (4.76),

T, 2 Z—%B%EQ = 5.6 sec , (4.78)

whereas our criterion for negligible smoothing of the knee is

T2 l§7§ﬁ§§9'= 10.4 sec . (4.79)

Comparing the definition of 14 implied by Fig. 10 with the vertical
record shown in Fig. 11, it is evident that the first two and last
two bursts will cause strong smoothing of the knee of the von
Karman spectrum since their nominal durations are of the order of

T. * 2 sec, whereas the middle two bursts would probably cause
weak but detectable smoothing, since their nominal durations are

of the order of Ty ® 7 sec.

Genera] Criterion for Negligible Effect of Nonhomogeneous
Behavior on Shape of Spectrum

When the "correction term" expressed by the second term in the
right-hand side of Eg. (4.53) is negligible in comparison with the
first term for all values of x, the nonhomogeneous behavior mani-
fested by variations in o{x) will not show up in the spectrum of
w(x) computed in the usual way. Combining Egs. (4.48) and (4.53),
we have

L2 2
o (k,x) ~ 02(x) L_| 3 (L k) - —2 928no(x) 5(2) p 1y
w z [ z z 1672 dx? z z

(4.80)

52



consequently, our criterion for negligible effects of nonhomogene-
ous behavior on the shape of the spectrum 1is

L2 2
z d no(x) | |1+(2) —
— e Icpz (sz)|<< 3 (LK) . (4.81)

Examination of the curves for n = 0 and_? = 2 in Fig. 7 shows that
the largest fractional contribution of ¢zz)(L k) occurs at the
origin k = 0 and that if the contribution of %he term_corresponding
to 8§{*)(0) is less than about 3% of the contribution &f°)(0), the
correction term will cause negligible smoothing of the knee of the
von Karman transverse spectrum. By combining Egs. (4.65) and
(4.81) with this fact, our criterion for negligible effect of the
nonhomogeneous behavior is

L2 2
z_ 4280 (x) | (197, 97) < 0.03
1672 dx?
or
2
L2 9—&9%§51 < o0.04 (4.82)
ax

where L, is the integral scale of the homogeneous component z(x)
in Eq. %3.1), which was assumed to have a von Karman transverse
spectrum in arriving at the inequality in Eq. (4.82).
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APPLICATION OF THE METHOD TO NONHOMOGENEOUS
TURBULENCE RECORDS

In this section, the methods described in the previous two
sectlons are applied to two nonhomogeneous turbulence recordings.
The results are found to be consistent with the general conclusions
drawn from the idealized examples described in Sec. 4.5.

Evaluation of Spectrum of Homogeneous Component of a
"STow" Burst of Turbulence Using the Arcsin Law

To illustrate the series expansion derived in the previous
section and to verify the general conclusions drawn in Secs. 4.5
to 4.7, we use Eq. (4.11) to develop here the instantaneous spec-—
trum of the "slow" burst of turbulence shown in the vertical record
of Fig. 12.

The first step is to determine the spectrum of the homogene-
ous component z(t) of Eq. (3.1) using "infinite" c¢lipping and the
sine transformation of Eg. (3.20). The actual record used was the
portion of the vertical record between the two vertical marks
shown on the lowest trace in Fig. 12. The time interval between
the vertical marks is from 62.00 to 110.65 sec, which represents
a spatial interval of 9,144 m (30,000 ft), since the measured air-
craft speed was 187.97 m/sec (616.7 ft/sec).

The procedure used to compute the spectrum of the stationary
component was exactly the same as that described in Sees. 3.3, 3.4,
and Appendix B of this report using the "infinite" clipping pro-
cedure. The value of M used in Eq. (B.1) was 962.4 m (3157.5 ft),
which is equivalent to a duration of 5.12 sec or 512 discrete
sample points of the record.

The spectrum computed from the infinitely clipped sample,
corrected for clipping using the sine transformation of Eq. (3.20)
and smoothed by the Papoulis window function described in Appendix
B, i1s shown in PFig. 13. The spectrum shown in Fig. 13 is normal-
ized so that it represents the wavenumber spectrum of a record with
unit mean square value. (The mean value of the portion of the
record between the vertical marks was computed and subtracted out
before the clipping operation.)

To determine the integral scale of the homogeneous component
of the vertical record shown in Fig. 12, the transverse von Karman
spectrum was smoothed by the same Papoulis window used in the com-
putation of the spectrum shown in Fig. 13. This procedure is de-
scribed in Appendix C. The value of M used was 962.4 m (3157.5 ft),
and the value of o2 = 1 was used, as was the case for the spectrum
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shown in Fig. 13. The smoothed von Karman spectra are shown in
Fig. 14 for integral scales of L = 121.92, 152.4, 182.88, 243.84,
and 304.8 m (400, 500, 600, 800, and 1000 ft). The spectrum of
Fig. 13 is also replotted in Fig. 14. It is evident that the
spectrum of Fig. 13 conforms reasonably well to the von Karman
spectrum with an integral scale of about 137.16 m (450 ft).

Method of Evaluation of Modulating Function o(x)

The vertical record shown in Fig. 12 has a relatively smooth
"envelope"; that is, the nonhomogeneous variance of the record
monotonically increases to a maximum value in a smooth fashion and
then monotonically decreases, also in a smooth fashion. This
behavior suggests that it should be possible to represent adequately
the nonhomogeneous standard deviation o(x) of the model of Eg. (3.1)
by a polynomial of Utk degree [i.e., represent adequately o(x) by
a polynomial of Uth degree* for the portion of the vertical record
of Fig. 12 between the two marks].

The advantage of using a polynomial of finite degree to
represent o(x) is that, for this representation, the series expan-
sion, Eq. (4.11) contains a finite number of terms; therefore,
there can be no problem with convergence of the expansion. If o(x)
1s a polynomial of degree N, then it is immediately evident from
Eq. (4.22) that all a,(x) are identically zero for n > 2N, since
every term in ap(x) contains a derivative of o(x) of order n/2 or
higher. Consequently, when o(x) is a polynomial of 4tk degree,
the series expansion of Eg. (4.11) reduces to

g a, (x)

® (k,x) =

W n=0
n=even

n!

80y (5.1)

Expressions for a,p(x), for n = 0 to 8, are contained in Appendix E.
In using the expressions for the a,(x) in Appendix E, notice that
the derivatives of o(x) of order larger than 4 are zero when o(x)
1s a polynomial of 4th degree.

To estimate o(x) for the vertical record illustrated in Fig.
12, Legendre polynomials were used. First, the record was squared
and the first four Legendre expansion coefficients, b!, of the
"instantaneous" squared record w(x) were computedT: m

*#4 polynomial of Uth degree is the lowest order polynomial that
permits three stationary points, e.g., one maximum and two minima.

tIn Eq. (5.2), the origin of the coordinate x has been chosen in
the center of the expansion interval, i.e., x ranges from -D/2 to
+D/ 2.
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D/2
= 2m + 1 J w?(x) P_(2x/D)dx , m = 0,1,2,3,4

D pye
(5.2)
where the Legendre polynomials Pm(E) used in Eg. 5.2 are
P,(E) =1
P,(8) = &
I 2

P,(8) = 5 (38° - 1)

P (E) = 2 (5E° - 3¢)

P,(E) = § (35E% - 30E% + 3) . (5.3)

The expansion interval, defined by the two lines on the vertical
record shown in Fig. 12, is ( D/2) < x < (D/2), where D = G144 nm
(30,000 ft). The estlmate G2(x) of the nonhomogeneous variance
62(x) of the vertical record provided by the Legendre expansion is

4
6%(x) = } bl P _(2x/D) (5.4)

0 m

The least squares propegty of Legendre polynomial expansions auto-
matically insures that 62(x) is the least squares best fit of a Uth
degree polynomial to w?(x) within the 9144-m (30,000-ft) interval D.

To avoild convergence problems in the series expansion of
¢,(k,x) it is necessary that o(x) [and not c?(x)] be a polynomial.
To provide a polynomial representation of o(x), the square root of
the Uth degree polynomial of Eq. (5.4) was computed and then
expanded in Legendre polynomials, whose expansion coefficients are,
therefore,

D/2

2m + 1 =
b = _ETT__ LD/2VGZ(X) Pm(ZX/D)dx , m= 0,1,2,3,4 . (5.5)

Thus, the U4tk degree polynomial approximation to o(x) used in the
remainder of the calculation is
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it
G(x) = ) b P (2x/D) , (5.6)

m=0

where the polynomials Pm(g) are defined by Eq. (5.3).

We may check the adequacy of the representation of Eq. (5.6)
visually by plotting this representation on the original record.
However, as 1s evident from the plot of the normal probability
density function shown in Fig. 15, the value of 20 is a better mea-
sure than o of the envelope of a Gaussian random process. Conse-
quently, we have plotted in Fig. 16 26(x), computed by Eq. (5.6).
The "random function" shown in Fig. 16 is an enlarged version of
the 9144-m (30,000-ft) portion between the two marks of the verti-
cal record shown in Fig. 12. Comparison of the curve 26(x) in
Fig. 16 with the velocity record shown, and with the normal proba-
bility density of Fig. 15 would seem to indicate that G(x) is an
excellent representation of the "instantaneous" standard deviation
of the nonhomogeneous record.

Series Expansion of Instantaneous Spectra for
Records of Finite Length

If we assume that the Uth degree polynomial representation of
o(x) provided by Eq. (5.6) is an exact description, then the repre-
sentation of the instantaneous spectrum provided by Eq. (5.1) is
also exact. However, the representation of o(x) provided by Eq.
(5.6) implicitly describes o(x) over an infinite interval of x,
whereas we know that it can be valid only over the 914l-m
(30,000-ft) interval (-D/2) < x < (D/2), as is indicated in Fig.
16. Thus, we must explicitly include this restriction of the
interval size in our series representation.

This can be accomplished by defining

A ‘w(x) , (-D/2) < x < (D/2)
w(x) = - R (5.7)
Io R [x| > (D/2)
or, equivalently,
w(x) = rect (%) w(x) , (5.8)

where rect (+) is the rectangular function
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(5.9)
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=
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A
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The instantaneous autocorrelation function of w(x) therefore may
be expressed as

X~ 5/2 x+£/2

) <w(x—g) w(x+g)>

¢W(E,x) rect (==2£5) rect (=f=

6,.(E,%) ¢ _(£,x) (5.10)

where ¢ (£,x) 1s the instantaneous autocorrelation function of
w(x), and where

¢$.(€,x) 8 rect (51%13) rect (X+g/2)
rect [‘2765-2—)()] R le < g
) (5.11)
0 > |X| > —g-

Consequently, applying the convolution theorem to Eg. (5.10), we
may express the instantaneous spectrum of w(x) in terms of the
instantaneous spectrum of w(x); i.e.,

QE(k,x) [ﬂb¢r(k—v,x) @w(v,x)dv (5.12a)

£m9¢r(v,x) o, (k-v,x)dv (5.12b)

where %.(v,x) 1s the instantaneous spectrum of the rectangular
function of width D; i.e.,

o ) & [ g (g, 00e7 2 ey (5.13)

- 0O
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Combining Eq. (5.12a) with the series expansion, Eq. (5.1),
glves

8 a_(x)
oysx) = 1 ﬁl—!éé’“)(k,x) , (5.14)
n=even
where we have defined
(n) A% (n)
¢E (k,x) = [ﬂn¢r(k~v,x) ®, (v)dv (5.15a)
= Lmép(\),x) (I)én)(k-\))dv . (5.15b)

In summary, the change in the series expansion of Eq. (5.1),
brought about by the redefinition, Eq. (5.7), of the turbulence
process 1s to replace the expansion functions @én)(k) of the
homogeneous component z(x) by the expansion functions defined by
Eq. (5.15b). The new expansion functions ¢§n)(k,x) are functions

of x as well as k, whereas the original expansion functilons are
independent of x. In fact, the new expansion functions are
wavenumber-smoothed versions of the original expansion functions.
It may be seen from Egs. (5.11) and (5. 15; that for small values
of |x| relatively little smoothing of @(n (k) takes place in the
operation of Eg. (5.15), whereas when |x|approaches the value of
D/2, i.e., the endpoints of the interval over which_ the expansion
is valid, a considerable amount of smoothing of @én)(k) takes
place in the operation of Eq. (5.15). The coefficients ap(x) in
Eq. (5.14) are the same for the expansion of w(x) as they are in
Eg. (5.1), the expansion of w(x).

Expressions for the original expansion functions ®( )(k) are
provided by Egs. (4.48b) and (4.63). The expansion functlons
@én)(k,x) may be efficiently computed from the gén)(k) by numeri-

cally computing the (inverse) Fourier transforms of the original
expansion functions, i.e., by first computing

>

oM () 2 [ oM ye P Eak (5.16)
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According to Egs. (5.16), (5.15), (5.13) ard (5 1}), and the con-
volution theorem, the new expansion functions ¢$n (k,x) may then be
computed by 2 )

(n) -
¢E (k,x) = I

¢;n)(g)e—i2ﬂk£d£
- (D~-2x)

(5.17)

The first term in Eg. (5.14) is no longer a quasi-homogeneous ap-
proximation to the instantaneous spectrum because of the smoothing
of the homogeneous spectrum described by Egs. (5.15) and (5.17).

In order to compute the coefficlents a,(x), n = 2,4,6,8 in
Eq. (5.14) from the representation for o(x) given by Eq. (5.6)
using the formulas for the an(x) given in Appendix E, we need
expressions for the derivatives of G(x). These derivatives may be
obtained by differentiation of Eq. (5.6):

. i 4 .
L () _,2\Y (i)
§ 77 (x) = (5) Z b Pp°7(2x/D) (5.18)
m=0
where we have used the "chain rule" and the definition
. adp (&)
PéJ)(2x/D) 4 _m 7 (5.19)

J
dg £ = 2x/D

Uiigg the notation a = 2/D, we give in Table 1 the expressions for
PmJ (ax), which were obtained by differentiating the Legendre
polynomials of Eg. (5.3).

TABLE 1. TABLE OF EXPRESSIONS FOR Péj)(ax)

m=0 | m=1 m=2 m=3 n=4

103(ax)2-17 | £05(ax)*-3ax] | FL35(ax)*~30(ax)2+3]

J=1y§ O 1 3ax %[15(ax)2—3] %[35(ax)3—15(ax)]
j=2l o | o 3 15ax £[105(ax)2-15]
J=3 0 0 0 15 105ax

j=4 0 0 0 0 105
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Evaluation of Instantaneous Spectra of "Slow"
Burst of Turbulence

It is evident from Fig. 7 that the maximum values of the mag-
nitudes of the individual terms in Eq. (5.1) occur at wavenumber
k = 0. According to Eq. (5.1), the value of @W(k,x), evaluated at
k=0, is

8 a, (x)
o (0 = ) I, 2{™ (0)
n=even
8 a_(x)
3 m g 520
n=
n=even

where we have used Eq. (4.48) in going to the second line. The
terms in the right-hand side of Eq. (5.20) have been plotted in
Fig. 17 for the case where ®;(k) is the von Karman transverse spec-
trum with integral scale of £ = 137.16 m (450 ft) (as was illus-
trated in Fig. 14). 1In compuglng the curves shown in Fig. 17, we
used the values of Q(n)(O) given by Eq. (4.65); the values of
an(x) were computed us1ng the representation of o(x) given by

Eq. (5. 6) and shown in Fig. 16. The derivatives of o(x) were com-
puted using Eq. (5.18) and Table 1, and the actual evaluation of
the a,(x), n = 0,2,4,6,8 from the derivatives was carried out
using the express1ons for the a's given in Appendix E.

The actual curves plotted in Fig. 17 are 10" times the indi-
vidual terms in Eq. (5.20). Consequently, to a first approximation,
each term contributes approximately one percent of the preceding
term in the neighborhood of x = 0, where the maximum value of G(x)
occurs, as is shown in Fig. 16. We therefore conclude that, for
practical purposes, all correction terms in Egs. (5.20) and (5.1)
are negligible in the present application; thus, we may approximate
the instantaneous spectrum of the record shown in Fig. 16 by the
quasi-homogeneous approximation

6, (k%) = o¥(x) 0,(k) , (5.21)
which is the first term of the expansion, Egq. (5.1), since

a,(x) = o%(x).

This result is completely consistent with the conclusions
drawn from our burst of turbulence example discussed in Sec. 4.5
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and 1llustrated in Fig. 10. It was concluded in Sec. 4.5 that
when Ly > 13 L,, the nonhomogeneous effects will not be easily
detectable in %he spectrum. It is evident from Figs. 10 and 16
that a definition of Lg for the record shown in Fig. 16, equivalent
to the definition implicit in Fig. 10, yields for the case shown in
Fig. 16, Ly =~ 4572 m (15,000 ft) — i.e., one-half of the record
length. Consequently, since we determined that L, = 137.16 m

(450 ft), we have for the record shown in Fig. 16 (Lg/L;) =
(15,000/450) = 33.3, which is much larger than the "threshold of
detection" (Lg/Lgz) = 13:. Thus, we could not expect the correction
terms in Eq. (5.1) to contribute significantly in the case of the
record shown in Fig. 16.

As a consequence of Eg. (5.21), we should expect the usual
(energy) spectrum of the nonhomogeneous record shown in Fig. 16 to
have the same form as the spectrum obtained by infinite clipping-
and use of the arcsin law. This (energy) spectrum was computed in
the usual way from the 9144-m (30,000-ft) segment shown in Fig. 16.
In computing this spectrum, we used the same Papoulis window func-
tion as was used in computation of the spectrum shown in Fig. 13.
A comparison of the two spectra is shown in Fig. 18, where in both
cases, the spectra are normalized to a value of 62 = 1 (since the
original record is nonhomogeneous). It is evident from Fig. 18
that no systematic deviation of any consequence occurs- between the
two spectra. This result is consistent with Eq. (5.21).

Computation of instdntaneous spectra of records with length-
sealed modulating functions of the shape shown in Fig. 16. By
keeping the shape of the modulating function o(x) the same, but
scaling its length D = 9144 m (30,000 ft) to shorter values, we can
determine the various degrees of effect such length-scaled versions
of the modulating function shown in Fig. 16 will have on the in-
stantaneous spectra of turbulence records. This investigation has
been carried out by using Eq. (5.14) to compute the instantaneous
spectra of turbulence records for values of D of 9144, 3048, 1524,
and 762 m (30,000, 10,000, 5000, and 2500 ft), for cases where the
homogeneous component z(x) of the model of Eg. (3.1) has a von
Karman transverse spectrum with an integral scale of L = 137.16 m
(450 £t). These calculations used length-scaled versions of the
modulating function o(x) illustrated in Fig. 16 and described
mathematically by Eq. (5.6).

Comparisons of the instantaneous spectra evaluated by Eq.
(5.14) at the value x = 0 (the midpoint of the intervals of length
D) are shown in Fig. 19 for the four values of D mentioned above.
The spectrum for D = 9144 m (30,000 ft) is indistinguishable from
the von Karman transverse spectrum. The spectrum for D = 3048 m
(10,000 ft) shows a very slight smoothing of the kneej; the spectrum
for D = 1524 m (5000 ft) shows a strong smoothing of the knee, and
the spectrum for D = 762 m (2500 ft) shows an even stronger smooth-
ing.
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The above results are consistent with our conclusions drawn
from the burst of turbulence example discussed in Sec. 4.5 and
1llustrated in Fig. 10. As we mentlioned above, a definition of L
for the modulating function shown in Fig. 16, equivalent to the
definition implicit in Fig. 10, is Lg = D/2. Thus, using
L = 137.16 m (450 f£t), we have for D = 3048 m (10,000 ft)

/Ly) = (5000/450) = 11.1; for D = 1524 m (5000 ft) (Lg/Ly) =

% and for D = 762 m (2500 ft) (Lg/Ly) = 2.8. It was detormined
in the discussion of Sec. 4.5 that smoothing of the knee should
become just detectable for a value of (Ly/Ly) = 13, whereas strong
smoothing of the knee should take place for values of (Lg /L,) £ 7.
The behavior of the spectra shown 1n Fig. 19 are completely con-
sistent wlth these results.

The above results further reinforce the conclusions drawn in
Sec. 4.6 to the effect that the first and last two bursts of
turbulence marked on the vertical record in Fig. 11 would cause
strong smoothing of the knee of the von Karman spectrum, whereas,
the middle two bursts would cause weak, but detectable, smoothing.

In Fig. 20, the instantaneous spectra computed by Eq. (5.14)
for a value of D = 762 m (2500 ft) are compared with transverse
von Karman spectra for values of x of -190.5, 0, and 190.5 m
(-625, 0, and 625 ft). The von Karman spectrum that each of the
computed spectra is compared with is the spectrum resulting from
the first term in Eq. (5.1), which is the quasli-homogeneous ap-
proximation. Each of the spectra shown in Fig. 20 shows appreci-
able deviation from the von Karman spectrum.

Comparison of Spectra of Flight 32, Run 4 Computed in the
Conventional Way and Computed Using Infinite
Clipping and the Arcsin Law

The vertical velocity record of NASA Langley Flight 32, Run 4,
has a relatively slowly (more or less) monotonically increasing
variance. Because of the gradual rate of change of the variance,
we did not expect this nonhomogeneous behavior to have any appreci-
able effect on the shape of the spectrum of the record. This con-
jecture was verified by computing the spectra of the last 400 sec
of the record (where the strongest nonhomogeneous behavior occurred)
in two ways. The spectrum was computed in the conventional way,
using a Papoulis window function with a value of M = 4807 m
(15,770 ft)* (see Appendix B). This conventional spectrum is dis-
played in Fig. 21. The spectrum was also computed by infinite
clipping (after subtraction of the mean value of -0.1988 m/sec
(~0.6521 ft/sec) and after correction for the infinite clipping

*Speed of measurement aircraft was 188 m/sec (616 ft/sec).
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using the sine transformation of Eg. (3.20). The same Papoulis
window functlon was used in both spectrum calculations. '

Since infinite clipping destroys all amplitude information
and, therefore, any effects due to the nonhomogeneous varlance, it
follows that good agreement between the two computed spectra would
verify the conjecture that the nonhomogeneous variance has negligi-
ble effect on the shape of the spectrum, since the conventional
spectrum calculation would retain any effects caused by the non-
homogeneous variance. It may be seen from Fig. 21 that 1little
systematic difference occurs between the two spectra. Consequently,
we must conclude that the nonhomogeneous variance of the record has
little effect on the shape of the spectrum, as expected. Because
the record has a nonhomogeneous varilance, both spectra plotted in
Fig. 21 have been normalized to unit varilance.

In Fig. 22, the two spectra are plotted together with a family
of von Karman transverse spectra with integral scales of 121.92,
152.4, 182.88, 243.8%4, and 304.8 m (400, 500, 600, 800, and
1000 ft). All von Karman spectra shown have unit variance in
agreement with the measured spectra. It is evident that the mea-
sured spectra, computed in both ways, contain more low-frequency
power than any of the von Karman spectra shown and that this
deviation from von Karman behavior cannot be attributed to non-
homogeneous behavior of the type described by the uniformly modu-
lated model of Eq. (3.1).
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APPENDIX A
CUMULATIVE PROBABILITY DISTRIBUTION FUNCTION OF
VERTICAL VELOCITY COMPONENT OF TEST NO. 190,
LEG NO. 5 OF LO-LOCAT PROGRAM

The cumulative probabllity distribution function P(W) is
defined as

W
P (W) éj p(w)dw (A.1)

-0

where p(w) is the (empirically determined) probability density
function. P(W) is tabulated below as a function of velocity W mea-
sured in ft/sec. The measured mean value and standard deviation
are also listed. These data were computed from the vertical velo-
city component of Test No. 190, Leg No. 5 of the LO-LOCAT program.

~.039 m/sec (~0.128 tt/sec)
2.94 m/sec (9.63 ft/sec)

Mean Value

Standard Deviation
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APPENDIX B
COMPUTATIONAL PROCEDURE FOR DETERMINATION OF
SPECTRA OF HOMOGENEOUS SAMPLE

Conventional Power Spectrum Calculation

The turbulence velocity records were recorded as functions of
time t. We wished to compute wavenumber spectra; hence, time co-
ordinate t was converted to spatial coordinate x by invoking
Taylor's hypothesis, i.e., x = Vt, where V is the speed of the air-
craft carrying out the measurements.

|:The] Fourier transform of the frequency smoothing function used
was L16

+ (1 - l%L) cos %% s e} <M

lo R ' ] > M

(B.1)

Notice that p, (£) has a total length of 2M meters. Consequently, to
prevent aliasing errors, it was necessary to add M "meters of zeros"
to our original record.

Denote the actual length of the record by 2£-M meters. Then,
after the addition of the M meters of zeros, our total record length
was 28 meters. The first step in the computation was to form the
(unsmoothed) wavenumber spectrum of the record w(x):

2% . 2
j w(x)e_l2ﬂkxdx s (B.2)

0

= 1
2, (k) = 53w

where, as noted above, w(x), as used in Eq. (B.2), is identically
zero in the interval (22-M) < x < 22. Once &,(k) was computed,
its (fast) inverse Fourier transform was computed, which yielded
the sample autocorrelation function

R, (£) = f @2(k)ei2“kxdk : (B.3)

Smoothing (i.e., convolution) in the wavenumber domain is equiva-
lent to multiplication in its transform domain. Consequently, the
next step was to multiply Rg(&) by the transform, Egq. (B.1l), of
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the frequency smoothing function and then to (fast) Fourier trans-
form the resultling product, after correction of RQ(E), for the
finite length (22-M) of the original sample. The resulting trans-
form 1is

R, (£)

M
_ ~-i2mkE
o (k) —j 0o (8) | —2pr | a . (B.4)
P v 1 - 5

Qp(k) 1s our frequency-smoothed spectrum computed in the "conven-
tional way", and corrected for finite sample length.

In computing the conventional spectrum displayed in Fig. 4, a
value of M = 932.1 m (3058 ft) was used in the window function of
Egq. (B.1). This value corresponded to 512 samples of the record and
to 5.12 sec of the original record, since the sampling rate was 100
samples/sec. The measurement alrcraft speed was 182 m/sec (597.3
ft/sec), and the total duration of the record was 270 sec, which
ylelded a total of 27,000 samples used 1n the transform of Eg. (B.2).

Power Spectrum Calculation From Infinitely Clipped
Record Using "Arcsin Law" Correction

The same record of length 22£-M meters was used to compute the
power spectrum using "infinite clipping" and the "arcsin law".
The first step was to subtract the mean value of m = -0.039 m/sec
(-0.128 ft/sec) from the record. The sign of each .of the corrected
samples was then examined; positive samples were assigned a value
of +1 and negative samples were assigned a value of -1. Any sample
identically equal to zero was given the value of the preceeding
gsample. Let us call the resulting waveform z(x). M "meters of
zeros" was then added to z(x) and resulted in a record of total
length equal to 2% meters. The sample spectrum QZz(k) of the
resulting record was then computed:

1

2% . 2
- > -i2mkx
Q’Q,Z(k) = m J “(x)e dx . (B.S)

0

The inverse Fourier transform of ¢zz(k) was computed next, which
ylelded the sample autocorrelation function of the "clipped" wave-
form:

Ry, (E) = f %Z(k)e“"’kxdk . (B.6)
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The sample autocorrelation function corrected for finite sample
length.is, therefore, Rzz(g)/(l - 5%%%). The autocorrelation

function correction of Egq. (3.20) was then used to correct the
autocorrelation function of the clipped signal; i.e.,

(g)
R} (E) = sin [2 j] (B.7)
250

was formed. The Fourier transform p,(Z), given by Eg. (B.1l) of
the frequency smoothing function, was then multiplied by R! (&),
and the Fourier ftransform of the resulting product was then taken:

M .
0, (k) = o7 [ p(£) Ry(p)e” TR (B.8)

The function é.,(k) is the spectrum obtained from the infinitely
clipped signal, and corrected for the clipping operation. The
values of @p(k), computed in the above manner, are shown in Fig. 4.
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APPENDIX C
- COMPUTATIONAL PROCEDURE FOR SMOOTHING OF
von KARMAN TRANSVERSE SPECTRUM

The unnormalized form of the (two-sided) von Karman trans-

verse spectrum is

1 + 188.75 L2%k?2
[1 + 70.78 L2k2]1'% (¢.1)

= ~2
@K(k) o°L

J d(k)dk = ¢2 , (c.2)

where k 1s wavenumber in cycles/unit distance, and L is the inte-
gral scale. The exact values of the constants in Eg. (C.1) are the
left-hand sides of

2
25w [;kggfgil = 70.78 (C.3)

and

(c.4)

2

200 T(4/3) (% _
3 il lF(ll/G) = 188.75

where T (+) is the gamma function.

We wish to compute a wavenumber smoothed version of the von
Karman transverse spectrum, where the wavenumber smoothing function
must be that used in smoothing the empirically determined spectra,
as described in Appendix B. To accomplish this, we shall use the
fact that the inverse Fourier transform of the smoothing operation
(a convolution) is the product of the (inverse) transform of the
smoothing function and the (inverse) transform of the von Karman
spectrum — thils latter quantity being the autocorrelation function,

[oo]

by (E) =J oy (k) * ™ Eak (C.5)

- OO

Thus, using p,(&) as defined by Eq. (B.1l), we computed the smoothed
von Karman spectrum ¢S(k) using
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e (k) = | p,(8) ¢ (E)e E . (C.6)

M
[ ~12mkE
-M

This smoothed spectrum is a function of the variance o2 and inte-
gral scale L of the turbulence. However, using the method out-
lined below, it is necessary to calculate the inverse Fourier
transform of the von Karman spectrum only once.

Define a dimensionless wavenumber by

>

k¥ £ Lk , (C.7)

and define a normalized von Karman transverse spectrum by

F(F) L L+ 188.75 kK* (c.8)
[1+ 70.78 K2]' %

According to Egs. (C.1), (C.7), and (C.8), the unncrmalized von
Karman spectrum may be expressed in terms of the normalized spec-
trum by

@K(k) = o%L ®(Lk) . (C.9)

Define, as in Egq. (C.5), the von Karman transverse autocorrelation
function by

by (E) f ¢K(k)ei2”k£dk

iQWLKE/Ldk

oL j d(Lk)e

- o2 J F(R)e 2k Ty (C.10)

If we define a normalized length measure by

R (C.11)
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e B e .

and a normalized von Karman transverse autocorrelation function by
3@ & [ smettiiar (c.12)

then, according to Egs. (C.10) to (C.1l2), we may express ¢K(£) as
ox(8) = o $(&/L) . (c.13)
From Eq. (C.11), we have
g = LT . (c.1l)

It follows that computation of ¢$(E), using Eq. (C.12), at values
of € = nAE, n = 0,1,2,+++ provides values of ¢K(£) at values of

nAg = nLAZ, n 0,1,2,°°++, i.e.,

¢K(nLA€) = g2 $(nAE) , n any integer . (C.15)

The relationship of Eq. (C.15) was used to compute ¢K(E) for dif-
ferent values of the integral scale L.

FPamilies of smoothed von Karman transverse spectra are dis-
played in Fig. C.1, C.2, and C.3 for values of M = 609.6 m
(2000 ft), 1219.2 m (4000 ft), and infinity (which corresponds to
no smoothing).
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FIG. C.1. FAMILY OF von KARMAN TRANSVERSE SPECTRA SMOOTHED WITH
PAPOULIS WINDOW [M = 609.6 m (2000 ft)].
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APPENDIX D
STATISTICAL CONFIDENCE OF VARIANCE ESTIMATES

The stochastlc process w(x) may be regarded as the result of
passing white Gausslan nolse through a filter whose squared
frequency~-response-function magnitude has the form of the power
spectrum of the turbulence velocities; 1.e., the von Karman trans-
verse spectrum of Eq. (C.1). Consequently, we may use the well
known relationship; e.g., Bendat and Piersol [6], p. 260 to 265.

s (D.1)

s

g1a

to compute the relative standard deviation of an estimate of the
mean—square value of the process w(x); 1.e., an estimate of the
quantity o2(x) of Eq. (3.1). Equation (D.1l), applied to the .
present situation, should be written as

_——l__
AkAX

%— (D.2)

where Ak is the "effective bandwidth" of the wavenumber spectrum
of the turbulence, measured in cycles per unit length, and Ax is
the averaging interval as used in Egs. (3.24) and (3.25). The

proper definition of Ak for use in Eq. (D.2) is, see Bendat and

Piersol [6], p. 265.
[J @(k)dk]
0
J 32 (k)dk

0

2

Ak = s (D.3)

where, in the present application, $(k) is the von Karman trans-
verse spectrum, given by Eq. (C.1).

Transverse veloeity components. From Egs. (D.3) and (C.2),
it is evident that Ak may be expressed as
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Ak: ©
2
L 92 (k)dk

- _1 ; (D.1)
4 2
- L 02 (k) dk

hence, from Eg. (C.1l), we have

(8k)™?

o 2

1.2 J [1 + 188.75 L2k2%7 dk
o L1 + 70.78 L2k2]" "8

[oe] 8 2 2

4L f (1 + § X )

dx
JTOTE o (1 + x2)%%

3
5/7 T(3) o (14 x?)

11 8 2
il R S 5.5
224 2 *

where we have substituted

Y70.78 1Lk

i
1]

- (D.6)

according to Egs. (C.3) and (C.4). Denoting the integral in the
right-hand side of Eq. (D.5) by I, we have

e (1 + 16 2, 64 x*)
T = 3 9 dx (D.7)
0 (1 + Xz)zyg ' ‘
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Using formula 3.251.2
we have for I:

_ 1 1 19
I =3 B(5» YT) t 7

2

|
POj

JE
where
B(x,y)

is the beta function,

I'(n+1)

and

1
F(§)
we have

r(=)

M

r(s)

rOJUT

and

=3
—~
o\ll—'
[*¥)
~
1]

=3
—~
=
\O
~
1]

I3

on p.

t 22 + Y
r(22) r(22)
- I(x) T(y)
T (x+y)

and T (+) is the gamma function.

=n T'(n) s
oo,

s /F

3 3

5 F(E)
LI
7 7

g T(g)

13 13
Z F(Yy)
Zrd

295 of Gradshteyn and Ryzhik [18],

(D.8)

(D.9)

Using

(D.10)

(D.11)

(b.12)

(D.13)

(D.14)

(D.15)
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and
M) = 1
-8 (8
= 213

4o 5
= = r(2) .
5 (3) (D.16)
Substituting Eqs. (D.11) to (D.16) into (D.8) and simplifying the
result gives

79 T(E)
T = /T_T- __5 (D.l?)
64 T(=)
3
Finally, combining Egs. (D.5) and (D.17) yields
7 11
79 T(z) T(=)
Ak~ = L E z; (D.18)
80 F(§) T(§)
From Dwight [19], pp. 132-133, we find
7y =
F(g) = 0.92772
r(%%) = 0.94066
by _
F(§) = 0.89298
r(%) = 0.90275 . (D.19)
Combining Egqs. (D.18) and (D.19) yields, finally,
Ak~'= 1.0690 L . (D.20)
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Combining Egs. (D.2) and (D.20) gives, for the relative variance
of an estimate of the mean-square value of the transverse velocity

component,
(D.21)

e

XY

g

2
(%) = 1.0690 L/(Ax)

The von Karman (two-sided)

Longitudinal veloeity component.
spectrum of the longitudinal velocity component may be expressed as

1
o(k) = 202L (D.22)
| U [1 + 70.78 12k2]1%
; Using Eq. (D.3) and the fact that
0& = 2 J ®(k)dk , (D.23)
0
we have, for the present case,
(Ak)™! = 1612 J 1 v dk
o [1 + 70.78 L2k2]78
_ _16L J 1 o dx
Y70.78 1o (1 + x2)73
11
16L T(=) ¢
= ?? J 1 7 dx (D.24)
5/ T(3) o (1 + x%) 73

(D.6). The above integral may be

where, again, we have used Egq.
295 of Gradshteyn and Ryzhik

evaluated by formula 3.251.2 on p.

f18]:
S SN S S
L (1 + )(2)5/3 2R 5
r(7)
T (D.25)
r(§
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Combining Egs. (D.24) and (D.25), we have

8L (L) T
5 7(3) T(2)

(Ak)~? = /3 L (D.26)

1.7320 I, . (D.27)

Consequently, the relative variance of an estimate of the mean-
square value of the longitudinal velocity component is

(%)2 = 1.7320 L/(Ax) . (D.28)
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APPENDIX E
EXPANSION COEFFICIENTS FOR DETERMINISTIC MODULATING FUNCTIONS

Expressilons¥* for a,(x) to a,(x), obtailned from Eq. (4.22), are
written out below in terms of the derivatives

6™ (yy & a2 o(x)
ax"

a,(x) = [o(x)]1?
a,(x) = - L {o(x) 0(2)(x) - [0(‘)(X)]2}
8m?
a,(x) = —— {o(x) o) - 460 iy + 3 P 001%)
128m*"
Ca(x) = - L (o(x) o' (x) - 60 (x) o0 (x)
204876
+ 15002 (%) (" (x) - 10 [0 (x)71%)
a (x) = —2— {o(x) 6% (x) = 86{ ) (x) o(")(x)

32768nw®8
+ 280 (x) o(%(x) = 5660 (x) o(%)(x)

+ 35 [o$*)(x)1%}

*For n = odd integer, all an(x) are zero.
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APPENDIX F
EXPANSION COEFFICIENTS FOR ERGODIC MODULATING PROCESSES

For ergodic modulating process o(x), we need to evaluate
integrals of the expansion coefficients an(x), where a,(x) is given
by Eq. (4.22) for n = even, and an(x) = 0 for n = odd.

Denote the kth derivative of o(x) by c(k)(x), i.e.,
k
c(k)(x) A d” o(x)

: F.1
K (F.1)

Integrating by parts a typical term in Eg. (4.22) gives

B
J U(k)(x) c(n_k)(x)dx =
A

X=B B
= o(k)(x) 0<n_k‘1)(x) - J o(k+l)(x) d(n_k—l)(x)dx

x=A A

(F.2)

Letting k' = k + 1, we see that the integral in the right-hand
side of Eq. (F.2) may be expressed as

B B ' 1
[ o(k+l>(X) G(n_k_l)(x)dx = J 0(k )(X) O<n_k )(X)dX , (F.3)
I\ A

which has the same form as the left-hand side of Eg. (F.2) (with
k = k'). Hence, we have
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i
b

B
I. c(k)(x) U(n—k)(x)dx =
A

x=B B t '
= oK) (x) o(m=k=1) (4 - J o) (x) o(PK") (1yax

x=A A
x=B x=B
- c(k)(x) c(n—k-l)(x) _ c(k+l)(x) o(n-k-2)(x) +

x=A x=A

B " ="

+ J c(k )(x) G(n k )(x)dx , (F.U4)
A
where k" = k' + 1 = k + 2. We may continue to integrate by parts

In thls fashion, each time obtaining an integral of the form
LF 0(k+m)(x) o(n_k_m)(x)dx on the right-hand side. We wish to
terminate this procedure at the value of m where

k+m=n-%k-m , (F.5)
l.e., where

m = g -k . (F.6)

For this value of m, we have

k+m=n-k-m= % s (F.7T)

which 1s an integer since n = even. Consequently, repeated integra-
tion by parts of Eq. (F.4) gives
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B
J c(k)(x) o(n_k)(x)dx =

A
n
5-k-1 . . . -
= I (c1)d Sty 0(n-k—J-l)(X)|X P +
J=0 tx=A
2.k ,B
+ (=1)°2 J [o(™2)(xy1%ax . (F.8)
A

Integrating Eq. (4.22) over the interval A < x < B, we therefore
have

. 1
J a (x)dx =
A (iuﬂ)n
[ n n
21 Dok-1
2 2 : - . X=B
xq92) ) (-1)k (2) yoo(-1)Y o<k+3)(x) o(n_k—J'l)(x)
k=0 j=0 x=A
[ n
5-1 n
> Dk (B
] RO L N CE DL I SR AN ESR AP,
k=0 A
N n/2 , n oy [P (n/2), 42 I .
0™ (B [ e eor"ax (F.9)

J

Consider the double summation in the above expression first.
Letting j = & - k, and hence, & = j + k in the inner sum, we have
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n n
51 27 e (ki1

I -0F @) e oy oIt (g
k=0 320

-1 5k . .
= kzo(rl;) .zo (_1)3+k O'(J+k)(x) an_l-(J+k)](x)

= Jj=

g-l 2-1

) kzo(i) gzk(—l) 0(2)(X) o1 o) (F.10)

However, it is immediately evident from Fig. F.1l that for an arbi-
trary function G(k,%) defined for integer arguments k and 2, we have

n n

n
5-1 -1 5=l

Y Y Gx,8) = ¥ ] G(k,R)
k=0 2=k 2=0 k=0

Hengce, the right hand side of Eg. (F.10) may be further simplified.
Defining

F(L;n)

>
I t~10

P (F.11)

we have for the desired expression

n1 o4

2. ny ? L (L) (n-1-2)

R I A (x) =

g-l

e (-1)% Fea3n) oM (x) o (P10 4y (F.12)

99




(n/72)-1

0 k (n/2)-1

FIG. F.1. ILLUSTRATING INTERCHANGE OF ORDER OF
SUMMATION.
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Furthermore, considering the two terms involving integrals over x
in the right-hand side of Eq. (F.9), we have

n
e n B (n/2), 12
1 CDE G JA (02 (x)1%ax

3k

n

B
2 D2 (0 [ P o ex

n
5-1

B
n/2 n (n/2) 2
SREER T IDNGA] RS jA [0 (/2 (x)1%ax

]

n B
(-1)"/? [ } <§>] [ te™/® )1 ax
k= A

B
(ei)™ L (o) (x)1%ax (F.13)

where we have used the fact that n is even and also Eq. (4.21) in
going to the next to the last step, and where, in going to the last
step, we have used (- 1)% = i and

which follows from the blnomial expansion,

n k n-k
(k)u v s

oS5

(utv)? =

k=0

by setting u = 1 and v = 1. Thus, combining Egs. (F.9, F.10, F.12,
and F.13), we have, finally,
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n

B . |27 2 (%) (n-1-2) x=B
[T aptax = =21 -0f rsn) P om0 (5
A (i4m)" | 2=0 x=A
1 B (n/2) 2
¢ 2o [P0t (F.14)
(2m) A

where n is even, and where we remind the reader of the definitions
of c<k)(x) and F(%3;n) given by Eqs. (F.1) and (F.11) respectively.

Equation (F.14) is an exact expression for the integral of the
expansion coefficients aj(x). It consists of two terms. The first
term involves derivatives of o(x) from orders zero to n-1, evalu-
ated at the endpoints of the interval of integration. The second

term involves an integral of the square of the (n/2)th derivative
of o(x).
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APPENDIX G
DERIVATIVES REQUIRED FOR EVALUATION OF EXPANSION FUNCTIONS

After conslderable algebraic manipulation, the first eight
derivatives of the function f,(k), required for evaluation of
Eq. (4.63), may be obtalined as

£ (K) = (1+cE)T
e = - ek + c BT
e{@®) = - Bora+ ok - o w1+ o BT
e = 2B ez B+ o WHTIM - B o 21+ 0 BT
£ (®) = %—7- c2f(1 + ¢ BHT% - Do k21 4 o )T
+ 8L o2 B (1 + ¢ BT’ %)
f§5>'@ - -2 ergra+ c BT - Lo R+ o BT
+ B3 e k1w c BT
fg‘"’)(E) = - 313—05 C3(1 + CEHT’% - 29 c R2(1 +Cc k)%
+ 2005 o2 pr(1 4 o BTN - 8383 s we(a + 0 kH)TM A

£{(®) = ——”36257515 C* K[(1 + ¢ K2)™*% _ _3.3_5. C R2(1 + ¢ R2)"'M

287 = —o =" 1927 ~3 76 —2y=53
+T02k"(l+0k2) 6-731—C ké(1 + C k2) ]

(@ = 136515 crp(1 4 o BT - B o R+ 0 kDT

3
+ 2—897—0 2 K*(1 + ¢ k2)""7 _ 23356 3 ge(1 4 ¢ R2)TCH

102131 -8 2

+—r—23
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APPENDIX H
SPECTRUM COMPUTATIONS FOR MODEL OF ABRUPT ONSET OF TURBULENCE

Here, we derive an expression for a,(x), given by Eq. (4.52a),
from the expressions for o(x), o'(x), and o"(x) given by Egs. (4.66)
and (4.67). Define
y = %1( . (H.1)
o
From Eqs. (4.66) and (4.67b), we have
o(x) o"(x) = - j% sech? y(tanh y + tanh? y) ; (H.2)
Lo
whereas, from Eq. (4.67a), we have
1 2 _ 1 4 .
[o'(x)]% = — sech’ y ; (H.3)
LZ
o
hence,
o(x) o"(x) - [o'(x)]? = - i% sech? y(tanh y + tanh? y
Lo
1 2
+ 5 sech® y) (H.4)
However,
sech? y = 1 - tanh? y (H.5)
therefore,
2 1 2 - 2 1 1 s
tanhy + tanh‘y + 5 sech®“y = tanhy + tanh®y + Cla) tanh<y
= % (tanh?y + 2 tanhy+ 1)
= %-(1 + tanhy)?
=2 g2(x) , (H.6)
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where, in going to the last step, we have used Eq. (4.66). Combin-
ing Eqs. (H.4) and (H.6) with Egq. (4.52a) gives

o?(x)

2m? L2
o

a,(x) = sech? (2x/L_) (H.7)

which is the result entered as Eq. (4.68).
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